Ll‘ Journal of Global Optimizationl5: 127-156, 1999. 127
‘\ © 1999Kluwer Academic Publishers. Printed in the Netherlands.

Generating Hard Test Instances with Known
Optimal Solution for the Rectilinear Quadratic
Assignment Problem

G. PALUBECKIS

Associate Professor, Department of Practical Informatics, Kaunas University of Technology,
Studentu 50, 3031 Kaunas, Lithuania
(e-mail: gintaras@soften.ktu.lt)

(Received 6 February 1998; accepted in revised form 27 October 1998)

Abstract. In this paper we consider the rectilinear version of the quadratic assignment problem
(QAP). We define a class of edge-weighted graphs with nonnegatively valued bisections. For one
important type of such graphs we provide a characterization of point sets on the plane for which
the optimal value of the related QAP is zero. These graphs are used in the algorithms for generating
rectilinear QAP instances with known provably optimal solutions. The basic algorithm of such type
uses only triangles. Making a reduction from 3-dimensional matching, it is shown that the set of
instances which can be generated by this algorithm is hard. The basic algorithm is extended to
process graphs larger than triangles. We give implementation details of this extension and of four
other variations of the basic algorithm. We compare these five and also two existing generators
experimentally employing multi-start descent heuristic for the QAP as an examiner. The graphs with
nonnegatively valued bisections can also be used in the construction of lower bounds on the optimal
value for the rectilinear QAP.

Key words: Test instances, Quadratic assignment, Graphs, Combinatorial optimization

1. Introduction

Givenafiniteselv = {1, 2, ... , n} and three: xn matricesW = (w;;), D = (d;;)
and¥ = (¥;;) with real entries, thguadratic assignment proble(@AP) is to find
a permutatiorp of the setV such that the sum

F)Y =" Y widpirpy + D Vip 1)

ieN jeN ieN
is minimized. When the matri® is composed of the shortest rectilinear distances
between pairs af points in the Euclidean space, the problem given by (1) is called
rectilinear QAP This problem is an important case of thaclidean QARN which
the entries of the matri® are required to fulfill the triangle inequality. We assume
in this paper that the space from which the points are taken is two dimensional,
i.e., the plane. We also assume without loss of generality that the lower H&lf of
under the main diagonal is zero, i.e.;; = 0 for all i, j such that<j. Indeed, if

128 G. PALUBECKIS

w;; # 0 for some pait, j, i<j, then we can replace;; with w;;+w;; (sinceD is
a symmetric matrix). Also, the main diagonal of the matfi’xcan be made zero
because such is the main diagonalof

A typical example of the Euclidean QAP is the facility location problem, in
whichn given facilities are to be assigned to the same number of locations. In this
interpretation,D is the matrix of distances, maybe rectilinear, between locations,
andW = (w;;) is the flow matrix, i.e.w;; is the flow of materials from facility to
facility j. The cost of simultaneously assigning facilityo locationk and facility
Jj to location! is given by the producty;;d;;. The fixed cost of assigning facility
i to locationk is given by the entryy;; of the matrix¥ . The objective is to find
a one-to-one assignment effacilities torn locations, i.e., a permutatiop, such
that the total cost of the assignment is minimized. For other applications of the
QAP, frequently its Euclidean version, see the reviews by Burkard (1984), Finke,
Burkard and Rendl| (1987), Pardalos, Rendl and Wolkowicz (1994), Burkard, Cela,
Pardalos and Pitsoulis (1998), and the recent book by Cela(1998).

The QAP is an NP-hard problem for which exact algorithms are able to solve
only instances of size less than 25 (see, e.g., Mautor and Roucairol, 1994; Clausen
and Perregaard, 1997). So, for larger QAP instances different heuristics are widely
used. The existing heuristic algorithms for the QAP include those based on sim-
ulated annealing (Burkard and Rendl, 1984; Wilhelm and Ward, 1987; Connolly,
1990), genetic (Fleurent and Ferland, 1994; Tate and Smith, 1995), tabu search
(Skorin-Kapov, 1990; Taillard, 1991; Battiti and Tecchiolli, 1994), greedy random-
ized adaptive search (Li, Pardalos and Resende, 1994; Pardalos, Resende and Li,
1996; Pardalos, Resende and Pitsoulis, 1997; see also Feo and Resende, 1995)
and ant system (Gambardella, Taillard and Dorigo, 1997) techniques. Usually, the
heuristic algorithms are tested using randomly generated QAP instances or stand-
ard test problems in the literature. The latter are collected into a special library,
called QAPLIB (Burkard, Karisch and Rendl, 1997). However, both for larger
problems in QAPLIB and for larger instances produced by traditional generators
the optimal solutions are not known. Testing and evaluation of a heuristic is more
complete when, together with benchmarks from QAPLIB, instances with an apriori
known optimal solution or just optimal value were used. In this context, the design
of special generators producing such instances is an important problem. For the
rectilinear QAP such a generator was proposed by Palubeckis (1988). Later Li and
Pardalos (1992) provided a general schema and two generators based on it for ar-
bitrary (not necessarily Euclidean) QAP. The instances created by these generators
were used to test three heuristics for the QAP: simulated annealing (Burkard and
Rendl, 1984), tabu search (Skorin-Kapov, 1990) and graph-partitioning (Murthy,
Pardalos and Li, 1992). The computational results provided by Li and Pardalos
(1992) show that such instances are not easy for these heuristics with regard to
both the solution quality and solution time.

Given a generator for the QAP or any other problem in combinatorial optim-
ization, the following question is very important: whether the set of instances

GENERATING HARD TEST INSTANCES WITH KNOWN OPTIMAL SOLUTION 129

produced by this generator is hard or not. The definition of hardness was sug-
gested by Sanchis (1990). The set is hard if no polynomial-time algorithm solves
each problem in this set, unless P = NP (a more formal definition of hardness is
given in the next section). The generators with hard output sets were developed for
several optimization problems on graphs, for example, for the well-known max-
imum clique problem (Sanchis and Jagota, 1996; see also Hasselberg, Pardalos and
Vairaktarakis (1993) for an implementation of such a generator). In this paper we
present several algorithms for generating instances with known optimal solution
for the rectilinear QAP and compare them experimentally with existing generat-
ors. These algorithms are similar to the generator proposed by Palubeckis (1988).
As shown by Cyganski, Vaz and Virball (1994), the decision problem for QAP
instances produced by this generator, and even its generalizations, is polynomially
solvable. On the other hand, the computational complexity of these instances in a
sense of the definition of hardness given above is actually an open question and
will be settled in the current paper — we shall prove that the problem of finding an
optimal solution for these instances is NP-hard.

The paper is organized as follows. In Section 2 we introduce some preliminar-
ies. Particularly, we define a class of edge-weighted graphs with nonnegatively
valued bisections and show that the optimal value of the quadratic assignment
problems related to these graphs is nonnegative. For one important type of such
graphs we provide a characterization of point sets on the plane for which this
bound is tight. In Section 3 we present our basic algorithm for generating rectilinear
QAP instances with known optimal solutions. To construct a distance matrix, the
algorithm uses some subset of points taken from the 2-dimensional grid. The flow
matrix is obtained as a composition of matrices corresponding to triangles having
one negative and two positive edges. The mafrixn this and other generators
considered in this paper is zero. We prove that the set of instances which can be
generated by this algorithm is hard. For this we use 3-dimensional matching —
the well-known NP-complete problem. We also prove that the set remains hard
for the grid of size (asymptotically) close to the number of objects. We extend the
basic generator to process graphs larger than triangles. The details of this extension
together with three implementations of the basic algorithm and one additional gen-
erator are provided in Section 4. The results of experimental comparison of these
and also two existing generators are given in Section 5. The results are obtained
using multi-start descent heuristic for the QAP. In Section 6 we remark that the
graphs with nonnegatively valued bisections can also be used in the construction
of lower bounds on the optimal value for the rectilinear QAP.

2. Definitions and preliminaries

In this section we present some definitions and basic facts used in the construction
and characterization of QAP instances.

130 G. PALUBECKIS

We denote a graph by = (V, E) whereV is the set of vertices an# is the
set of edges (unordered pairs of vertices), and a digraph by (V, A) whereV
is the set of vertices as before aAds the set of arcs (ordered pairs of vertices).
All the graphs and digraphs considered in this paper are without loops. Usually,
the edges of a grapti = (V, E) will be supplied with weights;;, (i, j) € E. We
assume throughout the paper thatandc;; denote the same object — the weight of
the edge(i, j) € E. A path P, (v, v’) of lengthk > 1in B = (V, A) is a digraph
with vertex seffvy = v, vp, ... , 1 =v'}, v, € V,i=1,... ,k+ 1, and arc set
{(vi,vig)li =1,... k).

Given a flow matrixW, we can construct a grapi(W) = (V(W), E(W))
whose vertex set corresponds to the g6t € N and there isj € N such that
w;; # 0orw;; # 0}, whose edge sef (W) = {(i, j)li, j € N, w;; # 0}, and
whose edge weights;; = w;;, (i, j) € E(W). Conversely, to any grapty =
(V, E),V C N, we can associate anx n flow matrix W(G) with nonzero entries
defined by the edges @, i.e., withw;; = ¢;; (if i < j)orw;; =c¢;; (if i > j)if
(i, j) € E, andw;; = 0 otherwise.

All the distance matrices considered in this paper are defined by some set of
points on the plane. We will writé®(S) to denote such a matrix for a st For
s =(x,y),s = (', y) € Sthe corresponding entry @(S) is equal tad (s, s') =
|x — x'| + |y — y'|. The sum of all entries ab is denoted byE (D).

Given integers:, > 1,n, > 1, we define aegular 2-dimensiona(or, more

precisely, regulan, x n,) grid Q(n,,n,) as a sef{(i, j)li = 1,... ,n,,j =
1,...,ny} of points on the plane. Theizeof the grid Q(n,, n,) is the product
nyny.

We denote the optimal value of (1) with zedoby fo(W, D).
We use the following definition taken from Sanchis (1990).

DEFINITION 1. LetIT be an NP-hard optimization problem. A debf instances
of IT is hard with respect tdT if no polynomial-time approximation algorithm for
IT can give the optimal answer for all instanced jnunless P = NP.

The following obvious fact describes a decomposition principle the reverse of
which, i.e. composition, stands at the basis of the instance construction procedure.

LEMMA 1. If W = W, + W, and D is a distance matrix, then
fo(W, D) > fo(Wy, D) + fo(Wa, D).

Note that this lemma holds for an arbitrary distance matrix, not necessarily the
rectilinear one.

Clearly, if some solutiorp is optimal for each of the problems corresponding
to Wy andW,, thenp is also optimal for the initial problem defined by the matrix
w.

Next we introduce a special class of edge-weighted graphs and give a bound on
the optimal value off for members of this class.

GENERATING HARD TEST INSTANCES WITH KNOWN OPTIMAL SOLUTION 131

DEFINITION 2. A graphG = (V, E) with edge weights;;, (i, j) € E, is aPB-

graph (has nonnegatively valued bisections) if the sQG, V') of the weights in
the set{c;;|(i, j) e E,i € V', j e V\V'ori € V\V', j € V'}is nonnegative for
each subse¥’ C V.

LEMMA 2. If W is such thatG (W) is a PB-graph, then for any rectilinear dis-
tance matrixD

fo(W, D) = 0. 2)

Proof. Suppose we are givenpoints defining the matriD, and letx, ... , x,
be theirx-coordinates sorted nondecreasingly. This sorting defines some ordering
of the points. LetS;,, i € {1,...,n — 1}, denote the set consisting of the first
points in this ordering. Lefy, ..., y, andS;,, j = 1,...,n — 1, be the list and
sets defined analogously with respect to thaxis. Using the expression for the
entry of the rectilinear distance matrix we can write

n—1 n—1
fo(W, D) =" Q(G(W), Vi) (xit1 —x) + Y QUGW), Vi) (yjr1— ¥))
i=1 j=1

whereV;, (respectively,V;,) is the set of the vertices a@¥ (W) corresponding to
objects assigned by an optimal permutation to the poings,ifrespectively,S;,).
The nonnegativity of the optimal value now follows from the inequaliigs >
Xi,yjiy1 =2 yj,6,j=1...,n—1 andQ(G(W), V') > 0 for any vertex subset
V' and thus foV;, andV;,,i,j =1,... ,n — 1. O

In this paper we are interested in PB-graphs which are signed graphs, that is,
have all edge weights equal to 1-ef.. Perhaps, the simplest signed PB-graphs are
cycles with one negative edge and the remaining edges being positive. The smallest
such cycle, namely, the triangle with one negative and two positive edges is used
in generators described in Palubeckis (1988) and Li and Pardalos (1992). Another
type of signed PB-graphs can be defined as follows! Lie: 3, be the number of
vertices of a graph. The vertex sétis divided into two subset¥;, V, such that
V1| = [1/2], V2| =1 —|V4|. The edge sek is complete and consists of the subset
E. ={(, j)|i € V1, j € V,} of positive edges and the subget = {(i, /)i, j €
Viori, j € V,} of negative edges. We denote this graphthy= (V, E). Itis easy
to verify that H, for any! > 3 satisfies the condition given by Definition 2, so is a
PB-graph.

For! > 3, let W' = W(H,) denote the flow matrix corresponding . In
the construction of QAP instances we udg! > 3, together with a point set
for which fo(W', D(S)) = 0. Now we address the problem of characterization of
point sets having this property.

LetS = {s;, = (x;,y)]li = 1,...,1} be a set of points on the plane, and
X ={X;lj =1,...,q} (respectivelyY = {Y|k = 1,...,r}) be the minimal

132 G. PALUBECKIS

le 2@

30 4 5@

6 7@

a b

Figure 1. Directed graphB(S, p) (on the right) for setS and identity permutatiop (on the
left).

increasingly ordered set of vertical (respectively, horizontal) lines on which points
of § are located. So, each point is defined by some pair of lines, one vertical and
another horizontal, and each line contains at least one potradr a points; € S,

we denote this pair b (s;) € X, Y(s;) € Y. Given a point sef and some assign-
ment p of the vertices off, = (V, U V5, E) to the points inS, we can construct a
directed graptB(S, p) = (V = V(X)UU(Y), A) whose vertex subsets(X) and

U (Y) correspond toX andY, respectively, i.e.V(X) = {v(X;)|j =1,...,q},
UY)={uX)k=1,...,r},wherev(X;),je{l ...,q}, (respectivelyu(Yy),

k € {1,...,r})isthe vertex associated with the vertical likie € X (respectively,

with the horizontal lineY, € Y), and whose arc set corresponds tep and is

the union of the following disjoint set$(v(X;), u(Y)IX; = X(si), Y = Y (s;)

for somes; € S, andp(v) = i for somev € Va}, {(u(Yr), v(X;)IX; = X(s;),

Y. = Y(s;) for somes; € S, and p(v) = i for somev € V;}. Thus for two
different assignmentp and p’ the digraphsB(S, p) and B(S, p’) may differ only

in orientation of some of their arcs. We denotedhy X ;) (respectivelydou(X;))

the number of arcs im whose head (respectively, tail) is the verte) ;). So,
8(X;):=8in(X;) +8ou(X) is the total number of arcs incident#¢X ;). The values
8(Y;), din(Y;) anddoi(Y;) are defined analogously.

EXAMPLE 1. Consider the setS = {(1,3),(2,3),(2 2),(3,2), 42,
(2,1),(3,1)}. ForthissetX = {1,2, 3,4}, Y = {1, 2, 3}. For illustration of the
digraph we can choose the identity permutatioe= (1, 2, ... , 7) defined on the
setV = ViUV, Vi = {1, 2, 3,4}, Vo = {5, 6, 7}. Using p, vertexi € V is assigned

to the points,;, = s; € S (see Figure 1a). The digrag(S, p) for the setS and
permutationp is shown in Figure 1b, where the verticesViriX) (respectively, in

U (Y)) form the left (respectively, right) column. It should be clear that this digraph
represents a group of permutations obtained fyoty permuting the first 4 and
the last 3 elements qf independently.

Now we will characterize the digraph for which the underlying assignment
p is optimal and the optimal value is 0. Lé{X) denote the set of indices €
{1,...,q}suchthat(X;) is odd. Obviously|J (X)| is evenif and only if is even.

GENERATING HARD TEST INSTANCES WITH KNOWN OPTIMAL SOLUTION 133

AssumingJ (X) = {j1, ..., ju}, u = 1, for odd/, defineJ,(X) = {j1, ja, .- . » Jju}
(or Ju(X) = {j1} if u = 1) andJ2(X) = {j2, jar - .. » ju—1} (OF J2(X) =D if u =
1). LetJ(Y), J1(Y), Jo(Y) be the analogous sets with respect to thepordinate.
DefineA(X ;) = 8in(X;) —dout(X), A(Yr) = 6in(Y) —out(Yx). A(X;) = O means
that a half of the vertices in the sgt € Vs, is on X;} belongs toV; and the
other half toV,. Furthermore, for oddthe sum ofA(X ;) taken over the index set
{1,...,q}isequalto 1.

LEMMA 3. LetS be a set of points on the plane. A permutatigndescribed by
the digraphB(S, p) is optimal andfo(W', D(S)) = 0if and only if:

forleven A(X;)=0 foreachj=1,...,¢q, and
A(Yy) =0 foreachk=1,...,r;

1 ifjeJiX)
foriodd A(X;)=1-1 ifje Jo(X) 3)
0 ifjefl,...,g\J(X)
and
-1 ifke Ju(Y)
AYy) =131 ifke L) 4)
0 ifkeld, ..., r\J(QX).

Proof. Consider a vertical line specified by the x-coordinatgreater than that
for X, and smaller than that fox,. We can assume that this line is different from
the lines in the seX. Let /; (respectively,l,;) be the number of vertices il
(respectively, inV,) which are assigned by to the points ofS at the left of the
line x. Conditions of the lemma imply that eithigr= [, or V1| —1; = |V5| —15. SO
the number of positive edges crossing the linis equal to the number of negative
edges crossing the same line. The same holds for y-direction as well. Therefore,
f(p) =0, and by (2) the solutiop is optimal.

To prove the ‘only if’ part, suppose that is an optimal permutation with
zero optimal value, but the conditions of the lemma for the corresponding digraph
B(S, p) are violated. We will derive a contradiction to this statement. Without loss
of generality, we may assume that the value\af different than that required by
the lemma for at least one vertical linexh Letg’ be the number of such lines and
X; be the leftmost of them. Since by the definition of the 4etnd functionA the
sumZ?zlA(Xj) = |V1| — |V2| = 0 or 1 depending on the parity 6fit follows
thatg’ > 2. Thereforej < g.

Consider any vertical line, say, located strictly betweeX; and X;,;. Let
11, I, have the same meaning as before, except that now these humbers are defined
with respect to the lina’ instead ofx. Clearly, if [is even, therl; # I,. If L is
odd, then eithel, > I, + 2 if A(X;) is greater than the corresponding constant on

134 G. PALUBECKIS

the right-hand side of (3), di < I, otherwise. For assignmept the total weight
of edges ofH, crossing the lined’ is equal to(ly — Ip)(I1 — I + [1/2] — [1/2]).
Forl,, I, specified above this expression is positive implying positivity'¢p), a
contradiction to our initial assumption. O

Now assume thatis odd. We call a vertex € B(S, p), v = v(X;) or u(¥y),
neutral if the corresponding differenca = A(X;) or A(Y,) is given by (3) or
by (4); otherwise we calh positiveor negativedepending on whethex is greater
or smaller than the corresponding value on the right-hand side of (3) or (4). We
provide an algorithm for searching an assignmgrgatisfying the conditions of
Lemma 3. In fact, the algorithm requires the condition (4) to be met for the initial
assignmenp already. To get such an assignment, we run through thg,geking
the lineY; first, thenY, next and so on. LeY, stand for the line selected ang;
be the number of points on it. ¥ € J1(Y), then we setn, := [m,; /2], otherwise
m, = |m/2]. We assign anyn, vertices ofV;, which are free (not assigned
earlier), to arbitraryn; points onY; and anyn; —m, free vertices oV, to the rest
points onY;. Upon termination of this procedure we have an assignment, called
compatible for which (4) is satisfied. So, the algorithm given below tries to balance
A for the vertices in the saf (X) only. The input besides digrag(s, p) includes
also the sef. The algorithm goes as follows.

Algorithm BALANCE

1. SetBcyrrent:= B(S, p).

2. ForBeyrent= (V(X)U U (Y), A), check whether the sét (X) = {v(X)) €
V(X) | v(X;) is negative} is nonempty. If so, take any= v(X;) € V_(X)
and go to 3. Otherwise go to 5.

3. Try to find a path inB¢yrrent betweenv and some positive vertex. If failure,
then go to 5. Otherwise letting (v, v’) be the path found proceed to 4.

4. Change an orientation of each arc Btw, v’) to the opposite and return to
2.

5. Assign arbitrarily the vertices dff; in the subset; to points in{s; € S |
Y, v(X;) € A, X; = X(s;), Y = Y(s;)} and the vertices iV, to the
remaining points ir. Stop with this assignment.

We say that the algorithm ends with a positive answer if it stops Whgient

has no negative vertex. We now estimate the computational complexity of the al-
gorithm. First note thaB(S, p) hasl arcs, so each step has at most linear running
time. Let&; be the constant on the right-hand side of (3). Each execution of the
loop Step 2-Step 4 diminishes the SlETle IA(X;) — &;| by 4 (since for the first
vertex of the path the value & is increased and for the last is decreased by 2). But
this sum can be bounded from abovegoy Z?zl §(X;) < 2. Thus, the algorithm
runs in timeo (1%).

The following pair of conditions provides a characterization of point sets for

which the equality in (2) with respect @’ is obtained.

GENERATING HARD TEST INSTANCES WITH KNOWN OPTIMAL SOLUTION 135

THEOREM 1. Let S be a set of > 3 points on the plane an® (respectivelyY)
be the set of vertical (respectively, horizontal) lines passing through the points in
S. fo(W!, D(S)) = Qif and only if:

for [even, each line itX U Y contains an even number of points$hf

for [odd, the algorithm BALANCE applied to any y-compatible assignment
ends with a positive answer.

Proof. First consider the case of odd Suppose on contrary that for some
assignmentpg f(po) = 0 = fo(W!, D(S)) yet the algorithm stops with some
assignmentp’ having at least one negative vertex in the corresponding digraph
B(S, p') = Bcurrent From the definition of the digraph and classification of its
vertices into neutral, positive and negative it follows thas§, p’) must also contain
at least one vertex which is positive.

For B(S, p') = (V, A), defineA* = {a € A| orientation ofa in B(S, p’) is
different from that inB(S, pg)}. Let B* be the subdigraph oB(S, p) induced
by the arc setd*. Suppose that\ is defined with respect t&*. Clearly, for a
vertexv = v(X;) the following holds:A(X;) < 0 if v is negative (inB(S, p')),

A(X;) > 01if v is positive, andA (X ;) = O if v is neutral. In additionA(Y;) = 0
forany vertexu(Y;), k € {1, ... ,r}.

Let v, be any negative vertex df*. Take some arcvf, vo) € A* and consider
the vertexv,. This vertex is neutral and, therefore, necessarily has at least one
outcoming arc. Append any such arc, say, {3), to (v1, v2). Continuing this way
(under the restriction that each arc can be taken only once) we obtain some path
P,(v1, v;) ending at some positive vertex. Note that the last vertex in this path
cannot be neutral or negative since such vertices have at least as many outcoming
arcs as incoming. Clearly, the pa#his a subgraph oB(S, p’) and can be found
in Step 3 of BALANCE, a contradiction to our initial assumption.

The ‘if’ part of the proof for odd follows directly from Lemma 3.

Suppose now thdtis even and the condition of the theorem is satisfied. We can
consider a solutiorp for which A(Y;) = 0 for eachk = 1, ... ,r. Similarly as
in the case of odd we call a vertex(X ;) negative ifA(X;) < 0 and positive if
A(Xj) > 0.1f pis such thatf (p) > 0, then the digraptB(S, p) always contains
a path from any negative vertex to some positive one. Reversing an orientation of
each arc on this path we obtain a new assignment with the sum of negatleser
to 0. Repeating this operation would result in the assignmpesith f(p) = 0. If
the condition of the theorem does not hold, then for any assignment the difference
A(X;) # O for at least one index ift, ... , ¢}, and thus by Lemma % > 0. The
proof is complete. O

COROLLARY. For Hz and S consisting of three points the optimal valgig= 0
if and only if one of the points if lies inside the minimal rectangle enclosing the
other two points of.

Proof. We will characterize digraphB8(S, p) describing y-compatible assign-
ments for which BALANCE fails to end with a positive answer.| I |= 2 or

136 G. PALUBECKIS

se fe

Se

Sse

fe

a b
Figure 2. Set of points (a) and directed graph (b) for which BALANCE fails.

3,1 Y |= 3, then such digraphs must have an ar¢X ;), u(Y2)), j € Ji(X). If

| X |=3,| Y |= 2, then they must have an aue(Y;), v(X3)), k € J1(Y). Using
definition of the set/; for X andY we can ascertain that in each of these cases
the condition stated in the corollary is violated. In all other cases BALANCE ends
with a positive answer, and as can be readily checked the condition of the corollary
is satisfied. a

REMARK 1. Checking conditions of the theorem is polynomial in time. For odd
1, this follows from the polynomiality of the algorithm BALANCE.

EXAMPLE 2. Consider the following set of 11 points: (1,2), (1,7), (2,1), (2,6),
(2,8), (3,3), (3,5), (3,6), (4,4), (4,7), (4,8). For this s&t,= {1,2,3,4},Y =
{1,2,...,8}. Assign the vertices ofi;; in the subset/; to points (1,7), (2,1),
(2,6), (3,3), (3,5), (4,8) (in Figure 2a these points are marked “f”) and the vertices
in V, to the remaining points (in Figure 2a marked “s”). It is easy to see that this
assignment is y-compatible. The corresponding digraph is shown in Figure 2b.
Clearly, J1(X) = {2, 4}, Jo(X) = {3}. Checking (3) we can conclude that the
vertexv(4) is negative and the vertaxX3) is positive. However, there are no path
between these vertices (fron4) to v(3)), so for this setfy > 0.

3. Hard sets of QAP instances

In this section we first give a description of our main set of instances with known
optimal solutions and prove that this set is hard (in a sense of Definition 1 with
QAP in the role offT). Then we evaluate asymptotically the minimal size of the

GENERATING HARD TEST INSTANCES WITH KNOWN OPTIMAL SOLUTION 137

grid used in the construction of these instances. Finally we formulate the set of less
simple instances and show that this set is hard too.

Letn denote the number of points as before andlét,, n,) be 2-dimensional
grid of sizen,n, > n. Defined = {(i, j; k)|i, j, k € N are pairwise different}.
Separating the last element in the tripletj¢ k) € 6 from the first two means that
@i, j; k) and (j, i; k) denote the same member @&f To each triplet(i, j; k) € 6
and any nonzero scalarwe can associate the graph-triangle, j, k, «) induced
by the edgesi(k), (j, k) of weighta and the edgei(;) of weight . In fact,
T(, j, k, o) is a weighted version off; with V = {i, j, k}. Given Q(n,, n,), n,

n < n.ny, and positive integers and w, we can construct an instance of QAP
using the following procedure.

Algorithm GENERATE

1. Choosen pointssy, ... , s, on the gridQ(n,, n,). SetW equal to the all-
zeros matrix. Led’ = {(i, j; k) € 01d(s;, sp) +d(sj, sp) = d(si, 5;)}.

2. Repeat times the following operations: choose a trip{ét;; k) € 6’ such
that w;x, wii, wji, wy; are nonnegative and;;, w;; nonpositive, allowing
possible repetition with some triplet (or triplets) chosen earlier, and an in-
tegera € [1, w]; setW := W + W(T (i, j, k, @)).

3. Sortthe points;, i € N, in the order of appearance while scanning the rows
of the grid Q(n,,n,) sequentially. Construct the distance matrix

D({s1, ... ,s,}) in such away that for anijye N theith row and column of
D would correspond to thiah point in the order obtained.
4. Addwpin := —min{w;;li, j € N,i < j} to each entry of¥ above the main

diagonal. Stop with the matricé® andD.

This algorithm is quite similar to the algorithm proposed by Palubeckis (1988).
Both construct the flow matrix in the same way — by choosing triplets defining
the triangles with one negative and two positive edges and modifying the entries
of W corresponding to these edges. To make the méatfixionnegative, some
constant to its entries is added. In both cases the matis defined by some set
of grid points, and the optimal value is computed according to the same formula.
The main difference between these algorithms lies in the triplet selection strategy.
In the old algorithm tripletsi, j; k) € 6’ with the largest distancé(s;, s;) are
considered first. When some triplet, s@y; j’, k'), is selected, then all triplets in
the sef{(i’, j'; k) € 6’|k # k’} become inadmissible. In the algorithm GENERATE
these restrictions are removed, and any triple?’isatisfying the condition stated
in Step 2 (this condition is satisfied in the old algorithm as well) can be chosen.

PROPOSITION 1. For i € N letl; be the rank of the poing; in the sequence
obtained in Step 3 of GENERATE. For a QAP defined by the(@®&jrD) delivered
by GENERATE, the assignment= (14, ... , [,) is optimal, and the optimal value
is equal towminX (D)/2.

Proof. Consider the flow matrixW (T (i, j, k, «)) corresponding to a triplet
(i, j; k) selected in Step 2 of GENERATE. It is clear from the definition of the

138 G. PALUBECKIS

setd’ and Corollary to Theorem 1 that for this matrix and distance mdrithe
assignmentp is optimal with the valuef(p) = 0. The claim is established by
applying Lemma 1 recursively for the setrofriplets and observing that Step 4 of
the algorithm does not violate the optimality pf O

In an implementation of the algorithm GENERATE some mechanisms for mak-
ing choice of the set of points in Step 1 and triplets in Step 2 should be specified.
We postpone this question until the next section.

Let I(n,n,,ny, t,w) denote the set of pairs4, D) which can be obtained
using algorithm GENERATE. We will show that for a wide range of values of
ny, ny, t andw this set is hard. We use a restricted version of the following NP-
complete problem (Garey and Johnson, 1979).

3-Dimensional Matching (3DM)

Instance. Disjoint set&y, U,, Uz with |U;| = |U,| = |Us| = m and a set of
tripletsZ C Uy x Uy x Us.

Question. Does there exist an exact matchiigc Z, i.e.,|M| = m and each
element ofU = U, U U, U U3 occurs in exactly one triplet a¥/?

This problem remains NP-complete even in the case when each eleniént of
is included in at most three triplets @f (see Garey and Johnson, 1979; also Dyer
and Frieze, 1985) for a further restriction of 3DM). We use a slight embellishment
of this version of 3DM.

Let B(u1) (respectivelyB(uy) andp(us)) be the number of appearances:gfe
U, (respectivelyu, € U, anduz € Us) in the triplets of the seZ.

PROPOSITION 2. 3DM with g(U1)=8(U2)=8(U3)=3 for eachu; € U, uy €
U,, uz € Uz is NP-complete.

Proof. We use a reduction from 3DM with(U) € {2, 3} for eachu € U. The
case when for some € U B(U) = 1 can be excluded from consideration since the
triplet containing suctx always belongs to an exact matching (if any) and can be
removed fromZ (together with its elements froii). Supposesd(u1)=2 for some
u1 € Uy. Then necessarily exigb € U, andus € Usz such thatg(us) = B(uz)=2.
Assumingthak; ¢ U,i = 1, 2, 3, addk, to Uy, k» to Uy, k3 t0o U3, and {1, ko, k3),

(k1, uz, k3), (k1, ko, u3), (k1, ko, k3) to Z. It is easy to see that for the new problem
the answer is ‘yes’ if and only if the answer ‘yes’ is for the initial one. This follows
from the observation that the triplet;(k2, k3) must belong to any exact matching

for the new problem. Note also that ng#{u1)=8(u2)=B(u3)=3. Continuing this

way we obtain the problem with each element included in exactly three triplets.
With respect to the existence of an exact matching this problem is equivalent to the
initial one, and thus is NP-complete. O

Now we state the main result of this section. Cgt= Ci(H}, ... , HY), k > 2,
denote the chain of graph$; = (Vi, E'),i = 1,... , k, each isomorphic tdy,
connected in such a way thgt’ N vitl| = 2 foreachi = 1,... ,k —1,Vin

GENERATING HARD TEST INSTANCES WITH KNOWN OPTIMAL SOLUTION 139

Figure 3. ChainCs = Cs(Hy}, ... , Hy).

V/ = ¢ for each pairi, j = 1,... ,k,|i — j| > 1, and the weight of the edge
e; € EENE*lforeachi =1,... .,k —1,is 2, i.e., is obtained by summing the
weights of this edge i, and Hj*l (it is required for this edge to be positive in
both graphs). An example of the chain is shown in Figure 3.

In the formulation below we do not strive to give tight lower bounds on the
dimensions of the grid,, n,. Essentially, we only assert that QAP instances pro-
duced by GENERATE applied to a grid, whose dimensions are sufficiently large,
are NP-hard. In fact, the reduction used in the proof of the theorem given below
allows to decrease, at the cost of increasing, and vice versa. So, instead of
trying to characterize the smallest andn,, for which the reduction still holds it is
more reasonable to evaluate the minimal size of the grid, that is, the preduct
Later in this section we will give an asymptotic estimate of such kind.

THEOREM 2. For anyn, > n/5,n, > n/9,t > 2n and positive integew all
bounded from above by some polynomiat tie set/ (n, n,, ny, t, w) is hard.

Proof. We will use a reduction from 3DM with each elementifincluded in
exactly three triplets. So, in our cagg| = 3m (and certainlym > 2). We also
suppose that the s&t does not have duplicate triplets. To make a construction of
a QAP more lucid, we assume in the beginning that n/(12n) is an integer.
We first select the sef of points on the grid. The rows of the grid correspond to
the elements ot/ as described by the following mapping(u;) = {2i — 1, 2i},
o(uy) ={2m+2i—1,2m+2i}, p(Uz) = {4m+2i —1,4m+2i}, uy; € Ug, uy; €
Uy, uz € Us,i = 1,...,m. The first Gn columns correspond to the triplets in
Z:p(z) =12 =12}, z; € Z,i =1,...,3m. Forz; = (uy;, uzj,ux) € Z
defineS(z;) = u(z;) x (p(u1;)Up(uz;)Up(uz)). The setS can be divided into two
disjoint subsets; andsS,. The first subsef; = Uﬁz’”lS(zl). Figure 4 shows the sét
form = 3 and Z= {(u11, uzz, uza), (u11, u21, uz1), (11, u22, uz2), (U12, U21, u33),

(w12, u23, u32), (U12, U23, u31), (U13, U22, U31), (U13, U21, U3D), (U13, U23, uz3)}. The
subsetS; consists of points in the columns 1 through 18. To define the second
subset, we distinguish between the following two cases.

Case 1m < (b — 2)/3. We append the grid obtained so far with the ¥et
{6m + 1,...,6m + 2(b — 3)} of additional 2p — 3) columns. In this case, =
{1,...,6m} x X.

140 G. PALUBECKIS

L) oo oo oo oo
o0 o e o0 oo oo
15 o0 e L) oo o0
o0 [3 N o0 o0
oe eoeo e e e e
oo oo L) o0 L)
oo 00 oe oo eoe
100 @ o0 o0 o0 o0
o0 o0 o0 o0 [)
L) oo L) o0 L)
o0 o0 o0 o0 o0

X
o0
1) 10 15 20 25 30

Figure 4. An example of the point st used in the reduction.

Case 2m > (b—2)/3. Itis assumed thatis such thab > 5, i.e.,n > 60m. We
append the grid with@ = 2[3m (b — 3)/(b — 2)1 new columns divided into pairs
T, ...,y using the mapping (i) = 7; = {6m+2i —1,6m+2i},i =1,... ,q.
To eachu € U we assign ani{ — 3)-element subsell (u) of {ry,...,m,}. We
require this assignment to be such that for any {1, ... , ¢} the cardinality of
the seth; = {u € Ul|m; € T1(u)} is at mosth — 2. Letn(u), u € U, be the union
of columns in all pairsr; € TT1(x). DefineS>(u) = p(u) x n(u). Then the subset
S, = U,euS2(u). In Figure 4 the subsef, consists of points in the columns 19
through 30.

In both cases it is easy to verify thg| = |Sy] + |S2| = n. To finish the
construction, we use-vertex graphG consisting ofn copies of the chail€’s and
3m copies of the chairC,z_3. Each pair of chains irG is vertex disjoint. The
weights of the edges aff belong to the set—1, 1, 2}. We take the matrit¥ =
W(G) as a flow matrix of an instance of QAP in our reduction.

We argue that a given instance of 3DM has an exact matching if and only if
fo(W(G), D(S))=0. Suppose that for some assignmeny (p) = 0. It follows
from the construction ofs, definition of C;, and Lemma 2 thafo(W (G), D(S)) >
0 and, therefore, such an assignment is optimal. Sihég a collection of chains
we can write

3m

fp)=)_ fGi)+Y f(2b—3i), 5)
i=1 i=1

wheref (5, i) (respectively,f (2b — 3, 1)) is a term off (p) defined by the weights
of theith copy of Cs (respectively,Cy;,_3). Clearly, we must haveg (5, i) = 0 for
eachi = 1,... , mandf(2b — 3,i) = O foreachi = 1,..., 3m. We can apply
Theorem 1 to each grapt}, i € {1,... ,k},inCy = Cy(H}, ... ,HY), k=50r
2b—3. SinceH} andH} ™ for eachi = 1, ... , k— 1 have two vertices in common,
we can see thaf(k, i) = 0,k = 5or 2 — 3, if and only if the set of point§s) |v

GENERATING HARD TEST INSTANCES WITH KNOWN OPTIMAL SOLUTION 141

P b

Figure 5. Decomposition of4 with double weights.

is a vertex of theth copy of C} is defined by the intersection either of 2 grid
columns andk+1 grid rows or 2 grid rows and+1 grid columns. The latter is
the only possible case for the copies@{,_;. This claim is established using the
following facts. Ifm < (b — 2)/3, the number of grid rowsi < 2b — 2 and is too
small to embed”,,_3 vertically. If m > (b —2)/3,then 2};| < 2(b—2) <2b—2
and, as assumed, > 5, so the number of points on the vertical lines again is
insufficient. After embedding copies ofCy,_3, exactly two points of§ in each
grid row remain to be free. This means that the vertices of a coplsahust be
assigned byp to the points in the sef(z;) for somez; € Z. The collection of
such sets used far copies ofCs spans all the rows of the grid. Consequently, the
set of tripletsM = {z; € Z|S(z;) is used to embed some copy Gf} is an exact
matching for a given instance of 3DM.

The proof of the claim in the direction from the existence of exact matching to
zero value offy is straightforward.

For the moment, we will digress from the main stream of the proof in order to
outline the changes in the reduction for the case whisnan arbitrary sufficiently
large positive integer. Ifz is not divisible by 12m, we usé = |b'/4]|,b =
n/(3m)], instead ofb defined earlier. In this case we also define the remainder
r =n —3mb’ + 3mo, whereo € {0, 1}, ando = 1 if and only if»’ = 1 or 3(mod
4). Clearlyr < 6m.

If » = 0 or 1(mod 4), we simply append the grid with additional column
containingr points of S and addr isolated vertices to the grapfi constructed
in the same way as before.

So, leth’ = 2 or 3(mod 4). To specify the analogues of Cases 1 and 2 considered
above, we can use the less restrictive conditiol (b — 1)/3. Letgaqq denote the
number of grid columns added to descrifie In the first casegag=2(0 — 3)+,
wherel=1 if » = 0, and/=2 otherwise. In the second case, under the condition that
b > 4andthud’ > 18, n > 3mb’ > 54m, we takejagq = 2[3m((b—3)/(b—1)1+
1+ [r/(2(b — 1))]. One of the new columns contains:goints of S, while the
rest at most Z{ — 1) points each. In both cases, the gr@pleonsists ofn copies
of Cs, 3m copies ofC,,_, andr isolated vertices.

It can be readily checked that the above claim concerning the reduction from
3DM to QAP remains valid for the modified construction as well.

We end the proof by changing the obtained instance of the QAP slightly and
showing that fom,, n,, t andw specified in the formulation of the theorem this

142 G. PALUBECKIS

instance belongs to the sktn, n,, ny, t, w). First we multiply the weight of each
edge ofG by two. Initially, G is a union of some number of copies Hf, and,
possibly, r isolated vertices (if- defined above is positive). After modification,
each copy ofH, changes into a graph that can be decomposed into 4 copies of
Hs; (see Figure 5). The total number of such copies 24bm — hm, whereh=4

if ¥ = 2 or 3(mod 4) and: = 16 otherwise. Sincé < n/(12m) it follows that

t' < 2n. To reachr specified in the theorem, we can duplicate arbitrary copies of
Hs from those appearing in the decompositiorGofor even use some new copies,
for example, consisting of three vertices all belonging to the same chaif).in
For each copy oHs3 in the collection obtained we apply the following procedure:
take some integer from the interval {d], and multiply by it the edge-weights of
the copy. The matriX¥ (G) = (w;;) corresponding to the modified gragh is
obtained by summingV (Hs) over all copies ofH3 processed by this procedure.
To makeW (G) nonnegative, we adty,i, := —minfw;;|i, j € N,i < j} to each
entry of the upper half oW (G) above the main diagonal.

Now it remains to show that the dimensions of the grid used in the reduction
do not exceea, andn, specified in the theorem. Let these dimensions be denoted
by n, andn|. Since each grid row contains at least 9 pointsScfexactly 9 if
b’ = n/(3m) = 18) it follows thatn| < n/9. An upper bound om’ can be
established by observing that at leaSt— 3 grid columns contain at least 6 points
of § each. Thug’ < n/5 for sufficiently largen. So, , < n, andn, < n,. To get
agrid of sizen, x n,, we expand the grid obtained by adding—»’. new columns
andn, — n’, new rows (these new columns and rows can even be inserted into the
grid by shifting some of the existing columns to the right and rows upwards).

It is easy to see that the modified construction is still working in the proof of the
reduction, and now a given instance of 3DM has an exact matching if and only if
fo(W(G), D(S)) = wnminx (D). Moreover, in the case when the answer for 3DM
is positive, the instance of the QAP constructed usSngnd modified graptG
belongs to the sdt(n, n,, ny, t, w). Note that Step 3 of the algorithm GENERATE
can be ignored when deciding whether an instance of the QAP is a member of
the set/. This step only describes a possible way in which the distance matrix
D from the setS is obtained. Since the reduction is polynomial in time the set
I(n,ny, ny, t,w)is hard. The proof is complete. O

REMARK 2. In the reduction considered above the number of paints 108.
This follows from the restrictions: > 2 and n> 54m.

REMARK 3. In Step 2 of GENERATE, a condition concerning three entrigg of
defined by a tripleti(j; k) is checked. This allows to avoid selecting two triplets
with corresponding triangles having common edge the weight of which is positive
in one of the triangles and negative in another. Releasing this condition leads to
a modification of GENERATE for which the set of possible instances inclddes
and, therefore, is hard too.

GENERATING HARD TEST INSTANCES WITH KNOWN OPTIMAL SOLUTION 143

Next, we state a theorem concerning asymptotic behaviour of the reduction. We
assume that parameterandw used to define the sétare bounded in the same
way as in Theorem 2.

THEOREM 3. Let e be any positive number. Then for sufficiently larg¢here
exists a grid of size less that + ¢)n for which the sef is hard.

Proof. Let ¢ be fixed and letn denote the cardinality of the setg, Us,, Uz in
3DM as before. We can assume without loss of generality dhiatless than 1.
Relaten to m by fixing n = [36m?/¢] and assume thait is sufficiently large to
guarantee that

V> 8Je/(1—e). (6)

We first show thatn satisfies the condition for Case 1 in the proof of Theorem
2 to hold, that is;m < (b — 2)/3. Sinceb > b'/4—1 > n/(12m) — 2 and

(b —2)/3 > n/(36m)— 4/3 itis sufficient to ascertain that < n/(36m) — 4/3.
Simplifying this inequality we obtain 36> + 48m < n. By the choice of: and (6)

we can write 367 + 48m < en + 8/en < n. Thus, the condition for Case 1 to
hold is established.

Given an instance of 3DM, the corresponding instance of the QAP is con-
structed using the same reduction as in the previous proof. Since the number of
additional columnsyagq < 2(b — 3) + 2 < 2b < n/(6m), the size of the grid
obtained is less than 6/ + n/(6m)) < en +n = (1+ ¢)n. The assertion about
hardness of the sdt defined with respect to this grid follows from the proof of
Theorem 2. a

Besides a standard algorithm which can produce each membaevitif nonzero
probability, we also investigate three other generators each characterized by a set
of QAP instances which can be compared to the/s@wo such sets are subsets
of I and one is a superset &f The description of these generators is provided
in the next section. We also consider a generator which additionally to triangles
selects also both some number of copiegfgfand some number of copies Af,.

The choice ofHs and H; and notH, or Hg is motivated by a wish to obtain the
matrix W (at the beginning of Step 4 of GENERATE) with a smaller value of the
ratio R(W) = (sum of positive entries ofv)/(—1)(sum of negative entries a¥).

We can expect that an instance of the QAP with zero optimal value and rifatrix
having a relatively small sum of positive entries may be harder for QAP heuristics
than an instance with the positivity of the matkix more pronounced.

For a graphG we define the ratiaR(G) = (total weight of positive edges of
G)/(—1)(total weight of negative edges 6f). Clearly,R(H;) = i/(i — 2) if i is
even, andR(H;) = (i +1)/(i — 1) if i is odd. ParticularlyR(Hs) = 2, R(Hs) =
R(Hs) = 3/2 andR(H7) = R(Hg) = 4/3. So, usingHs and H7 leads toW with
the same value oR(W) as using the same number Bt and Hg. Naturally, we
prefer graphss and H; since they are smaller and easier to process. We should

144 G. PALUBECKIS

note that generators using graptswith more than 7 vertices could be construc-
ted. So, an algorithm described below can be considered simply as an illustration
of our approach.

In fact, this algorithm is a generalization of GENERATE obtained by inserting
two new steps after the initialization step: one for processingopies ofH; and
anotheris copies ofHs. The input to the algorithm is that to GENERATE enlarged
with the numbersi; andhs. Letting H; («), i = 5 or 7, denote the grapH; with
weight of each edge multiplied ky, the algorithm can be stated as follows.

Algorithm GENERATE_USING_LARGER_GRAPHS

1. Choosen pointssy, ... , s, on the gridQ(n,, ny). SetW equal to the all-

zeros matrix.

2. Repeah; times the following operations:

2.1. Choose a subsét C {s1,...,s,} consisting of 7 points and an
assignmentp : i € V — k, sy € Sz, of the vertices ofH; =
(V,E = E, U E_) to points inS7 such that

(1) f(p)=0,

(2) wpiph = 0 (f pG) < p(j)) or wyypay = O (if p@) >
p(j)) for each(i, j) € E,, and
Wiy < 0 (f p) < p(j)) or wyypey < 0 (if p@i) >
p())) foreach(, j) € E_,
allowing possible repetition with some choice (or choices) made
earlier while executing this step.
2.2. Choose an integere [1, w].
2.3. Rename the vertices @&f; = (V, E) according top. SetW :=
W + W (H7(a)), whereH(«) corresponds t@f; just obtained.

3. Repeatis times the analogous operations as in Step 2 with respect to the

graphHs.

4. Perform Steps 2—4 of the algorithm GENERATE.

Note that the existence of an assignmemwith f(p) = 0 can be checked and
such an assignment can be obtained using the algorithm BALANCE described in
the previous section. This operation and especially checking signs of the entries of
W corresponding to the edge seti$ or Hs may significantly restrict the choice
of a subsefS7 in Step 2.1 and subsét in Step 3 of the above algorithm.

Let I'(n, ny, ny, hy, hs, t, w) denote the set of paidV, D) which can be pro-
duced by GENERATE_USING_LARGER_GRAPHS. As it follows from the next
observation this set is not comparable with

REMARK 4. If at least one ofi; and#s is positive, then for any, ny, n,, w, t
andt'I'(n,ny, ny, hy, hs, t', w) N I(n, ny, ny, t,w) = ¥. To establish this simple
fact, it is sufficient to compare the values Bffor both algorithms. Thus, before
addingwmi, to W in GENERATE R(W)=2, while at the same point in GENER-
ATE_USING_LARGER_GRAPHR (W) < 2.

The next result is essentially a reformulation of Theorem 2 for thé’set

GENERATING HARD TEST INSTANCES WITH KNOWN OPTIMAL SOLUTION 145

THEOREM 4. For anyn, > n/5,n, > n/9,t > 2n, nonnegative integers;, /s
and positive integeiw all bounded from above by some polynomiakhahe set
I'(n,ny,ny, hy, hs, t, w) is hard.

Proof. We need only to notice that matricé8(H7(«)) and W (Hs(«)), o>0,
exist which can be added t&% without destroying the reduction used to prove
Theorem 2. For example, such a matrix is defined by a gigph=5 or 7, whose
vertices are properly chosen from the vertex set of some copy of the €hain
j=5or 2 — 3 or 2 — 2. ‘Chosen properly’ means that the restriction of any
assignment with zero value for the copy@f (see (5) and arguments below) to the
vertices ofH; has zero value as well, and, moreover, the edge weights afe in
conformance with those of the copy similarly as in the second condition stated in
Step 2.1 of GENERATE_USING_LARGER_GRAPHS. O

Note that we can release the second condition in Step 2.1 and its analogues for
Hs and Hs. This does not refute the fact of hardness of the set of possible instances.
However, the absence of this condition leads to a matfiwith a larger value of
R, what is not desirable.

We end this section with a discussion relating our results with those obtained by
Cyganski, Vaz and Virball (1994). They provide a generalization (called a gener-
alized Palubeckis algorithm) of the QAP generator presented in Palubeckis(1988).
The algorithm GENERATE described in this paper, in fact, fits into the schema
of this generalization. Cyganski, Vaz and Virball(1994) also give a special linear
program and prove that this program can be used to compute the optimal solution
value for a QAP instance produced by the generalized Palubeckis algorithm. We
reformulate their main result using our definitions and notations.

Let ® = {O1,...,0,},r = (,)(n — 2), be the set of triplets defined with
respect tavV as before, andv = (w;;) be the matrix produced by the algorithm
GENERATE. To each triple®, = (i, j; k),l € {1, ..., r}, we associate a variable
«; and define®;” = {(i, k), (j, k)}, ©; = {(i, j)}. Then the linear program given
by Cyganski, Vaz and Virball (1994) can be written

Wo = Maxw,
w + Z o — Z a=w;,i=1...,n-1j=i+1...,n,
1,G,))e0; 1G,j)e®)
(7)
=0, [=1...,r

The following statement is a specialization of the theorem proved by Cyganski,
Vaz and Virball (1994).

THEOREMS. If W = (w;;) and D are matrices produced by the algorithm
GENERATE, then for the corresponding QAP the optimal vgh®, D) is equal

146 G. PALUBECKIS

to
woX(D)/2,

wherewy is the optimal value of the linear program (7). Generally, if the pair of
matricesW and D defines an instance of the Euclidean QAP, theX (D)/2 <

fo(W, D).

Clearly, if W and D are obtained using algorithm GENERATE, theg equals
wmin defined in Step 4 of this algorithm.

In fact, this theorem says that the optimum value of each QAP instance delivered
by GENERATE can be computed in polynomial time. Nevertheless, as shown in
this section, the set of instances which can be obtained using GENERATE is hard,
and no polynomial-time algorithm for the QAP exists, unless P=NP, which can
solve each QAP instance in this set. Note that the linear program (7) cannot be
used to devise such an algorithm. The job could be done by a linear program for
which an analogue of Theorem 5 withyX(D)/2 > fo(W, D) substituted for
woX(D)/2 < fo(W, D) holds. However, the results in this section imply that no
such program exists, unless P=NP.

4. Generators

We begin a description of generators with a procedure for which the set of pos-
sible instances is a supersetiofThen we describe three implementations of the
algorithm GENERATE, which can be ordered according to the strict inclusion
relation defined on the corresponding sets of instances that can be produced by
these implementations. Finally, we provide some details of a program realizing the
algorithm GENERATE_USING_LARGER_GRAPHS.
The input to our first algorithm includes parametegsn,, t andw defined in
the previous section and one additional parameter — an upper bgglpgon the
number of trials in triplet selection. The algorithm can be stated as follows.
Algorithm GEN1
1. Form a listL = (s1,...,sy), " = nyn,, of grid points by scanning the
rows of the gridQ (n,, n,) sequentially. SeW equal to the all-zeros matrix.
2. Repeat times the following operations:
2.1 Sety :=0.
2.2 Randomly select a pait, j) € {(k,D|k,] € N',k < I, wy < 0},
whereN’' = {1, ... ,n'}.
2.3 FormaseN'(i, j) = {l € N'\{i, j}d(si, s)+d(sj, s) = d(si, s}),
wir, wii, W), wi; are nonnegative}. IN’(i, j) is nonempty, proceed
to 2.4. Otherwise sef:=y +1, and if y<ppoung return to 2.2; else
stop with a failure.
2.4 Randomly seledt € N'(i, j) and an integet € [1, w]. SetW :=
W+ W(T3, j, k,).

GENERATING HARD TEST INSTANCES WITH KNOWN OPTIMAL SOLUTION 147

3. Eliminate zero rows and columns froW and corresponding points from
L, assuming that the correspondence is given by the mapgimgow and

column of W)— s;,i € N'. LetL' = (s, 55, ... ,s,),n < n’, be the list of
points upon termination of this procedure.
4. Add wmin := —min{w;;li, j = 1,... ,n,i < j} to each entry oW above

the main diagonal.

5. Generate random permutation (assignment of objects to poirit9 ip =
(pD), ..., pm)).

6. Permute rows and columns wf according top, i.e., for each pait, j, 1 <
i < j < ntakew;j = wyapi) if p(i) < p(j) orwij = wp(j) i otherwise.

7. Construct the distance matri(L’) by takingd;;,1 < i,j < n,i #

J, equal to rectilinear distance between poisjtss; € L’. Stop with the
matricesW and D = D(L’) defining a QAP instance, permutatignop-
timal for this instance and the optimal valgg(W, D) = >, wijdpi)p(j) =
Wmin=(D)/2.
The algorithm either produces an instance or reports about a failure. The latter,
however, is possible only for largeand very smalbyoung

It can be easily seen that the first two steps of the above algorithm are reincarna-
tion of the first two steps of GENERATE. As compared to GENERATE, only Step
3 is essentially new. In fact, the action of Step 3 corresponds to removing isolated
vertices fromG(W).

Let I1(n,,n,,t, w) denote the set of instances which can be obtained using
GEN1 (when GENL1 is terminating properly, i.e., with an instance of the QAP).
Clearly, I1(n,,ny, t,w) D I(n,n,, n,,t, w) for positiver and anyn > 4. Note
that when an instance ih belongs also td, permutationp delivered by GEN1 is
the same as permutatigndefined in Proposition 1. However, wheis sufficiently
large andn<n,n,, the probability of producing by GEN1 an instance, which be-
longs to the sef, is extremely small. In practice, the size of QAP instances created
by GENL1 is equal ta.n,. The next algorithm is a variation of GENERATE.

Algorithm GEN2.

1. Compute grid dimensions,, n, applying the same formulas as in the re-

duction used to prove Theorem 2.

2. Choose randomly pointssy, ... , s, on the gridQ(n,, n,). SetW equal to

the all-zeros matrix.

3. Apply Step 2 of GEN1 witl' replaced by:.

4. Apply Steps 3 and 4 of GENERATE.

The values ofr, andn, can be included into the input to GEN2, and so Step
1 of this algorithm can be dropped. In fact, this modification of GEN2 is an exact
implementation of GENERATE. In the next section we refer to this modification
as GEN2M. In both cases, for GEN2 and for its modification, the set of instances
which can appear in an output is equalito:, n,, n,, t, w). Before closing the
description of GEN2, we should note that the random choice of points in Step

148 G. PALUBECKIS

2 and sorting in Step 4 of GEN2 (or, more precisely, in Step 3 of GENERATE)
replace Steps 5 and 6 of GENL1.

The following algorithm is another modification of GENERATE. It includes the
first step (selection of grid points) of the reduction considered in Section 3. In other
words, the distance matrix generated by this algorithm is of the same type as the
matrix D(S) defined there. In the description below,denotes the size of sets in
3DM as before. It is assumed that>2. Also,m is bounded from above by/54
for certain values of or by n/60 (see previous section for details).

Algorithm GEN3

1. Generate randomly 3iriplets describing an instance of 3DM with each
element ofU appearing exactly 3 times.

2. FormalistL = (sq, ..., s,) of grid points belonging to the sétdefined in
the proof of Theorem 2. SV equal to the all-zeros matrix.

3. Apply Step 2 of GEN1 with' replaced bya.

4. Apply Steps 4, 5, 6 and 7 of GEN1 wifli replaced byL.

Let I3(n, m, ny, ny, t, w) denote the set of instances produced by this algorithm.
Since the choice of the first subset ®fis determined by the set of triplets and
the second subset of is formed deterministically, for any feasible value maf
I3(n,m,ny,ny, t,w) is only a subset of (n, n,, ny, t, w). Nevertheless, the set
I3(n, m, ny, ny, t, w) includes instances obtained using the reduction from 3DM to
QAP and thus is hard, too.

The algorithm GEN3 was extended to fully implement the reduction described
in the proof of Theorem 2. In this extension, named GEN4, some of the triangles
are chosen deterministically (the numbeof such is specified in the proof) and
the rest are chosen randomly.

Algorithm GEN4

1. Apply Steps 1 and 2 of GEN3.

2. For each of’ copies ofH; specified in the reduction perform the following:
randomly select an integer € [1, w] and setW := W + W(T (i, j, k, @)),
wherei, j, k are the vertices of the copy.

3. Setr:=t —¢'. If t > 0, apply Step 2 of GEN1 with’ replaced by:.

4. Apply Step 4 of GEN3.

Let Iu(n,m,ny,ny, t,w), t > t', be the set of instances produced by GEN4. The
following two properties are cleafs(n, m,ny, ny, t,w) C I3(n,m,ny, ny, t, w),
and the sefs(n, m, n,, ny, t,w), t > t',is hard.

We also have implemented a variation of the algorithm GENERATE_USING _
LARGER_GRAPHS described in Section 3. This variation, named GENS5, is ob-
tained by replacing Steps 1 and 4 of GENERATE_USING_LARGER_GRAPHS
with Step 2 and, respectively, Steps 3 and 4 of GEN2. In Step 2.1, a stjbiset
chosen randomly. For this subset, an assignmesdtisfying the conditions stated
in Step 2.1 is searched. If search fails, a new sulisés$ selected. The number
of failures is bounded from above by some paramgtewhose value is included
into the input to GENS. If this bound is reached, GEN5 stops with no instance

GENERATING HARD TEST INSTANCES WITH KNOWN OPTIMAL SOLUTION 149

generated. In this caséy should be decreased or(ang) increased. The same
strategy is used to implement Step 3. The hardness of the set of instances which
can be produced by GENS5 is established by Theorem 4.

In our experiments we also tried the algorithm proposed by Palubeckis (1988).
The description of this algorithm can also be found in Li and Pardalos (1992) and
Pardalos, Rendl and Wolkowicz (1994). In the current paper we call this algorithm
GENO. As already remarked in the preceding section, GENO is similar to the al-
gorithm GENERATE described there. In fact, GENO forms the ma#fixn the
same way as GEN1-GENS3 - by applying operations of the same kind as those
specified in Steps 2.2-2.4 of GENL1. In GENO, however, the rules for choosing
triplets used to modifyW are slightly different (see, for example, Pardalos, Rend|
and Wolkowicz (1994) for details).

The last algorithm we tried is the second generator proposed by Li and Pardalos
(1992) (and named in their paper as GEN2). The reasons of choosing their second
and not the first generator are the following: this generator is less similar to GENO
than the first one which like GENO and also generators suggested in this paper is
using triangles in the flow matrix construction, and, most importantly, the results of
experimentation presented in Li and Pardalos (1992) show that the second gener-
ator produces slightly harder QAP instances than the first one. In our experiments
we use a specialization of the second generator by Li and Pardalos(1992) for the
rectilinear QAP. Their algorithm is adjusted to generate QAP instances in which the
matrix D is composed of the shortest rectilinear distances between pairs of points
on the grid. This algorithm, denoted GENLP, is of different type than generators
based on the triangle selection.

For instances produced by the second generator by Li and Pardalos (1992)
the Gilmore-Lawler bound (Gilmore, 1962; Lawler, 1963) is equal to the optimal
value of the objective function. Li, Pardalos, Ramakrishnan and Resende (1994,
Corollary 3.1) prove that there is no polynomial-time algorithm to find an optimal
permutation for a QAP instance with this property, unless P=NP. However, the
answer to the guestion whether the set of instances which can be generated by
GENLP is hard or not is not known. We only expect that this set is hard.

5. Experimental results

The goal of experimentation was to compare, using some heuristic for the QAP,
the hardness of QAP instances produced by different generators. As an examiner,
the multi-start descent technique was chosen. This algorithm consists of two steps
executed intermittently: randomly generating a starting solution, and applying the
descent procedure which improves a given solution by performing the pairwise
interchanges of objects and stops when no interchange leads to a solution with
smaller value of the objective function. The simplest stopping criterion for multi-
start descent is the upper bound on the number of repetitions of these two steps.
Being simple and easily implementable, the multi-start descent heuristic yields

150 G. PALUBECKIS

solutions of sufficiently high quality, not much worse than those obtained using
more sophisticated methods (Taillard, 1995). If good solutions are needed in a short
amount of time, Taillard (1995, beginning of Section 5) recommends to use either
methods based on the tabu search, robust (Taillard,1991) or reactive (Battiti and
Tecchiolli,1994), or simply multi-start descent procedure.

For evaluation of the quality of solutions, we had to decide which measure to
use: the traditional one

K'(fhed = 100(fieu— f0)/fo,

where fhey IS @ heuristic solution value, or that with the reference to an average
value of f

K(fheu) = 1oo(ﬁ1eu_ fO)/(fave_ fO),

where fave = (Y10 Y1 wi) (it Y01 dip)/(5) is the average value of

f taken over the set of all permutations. Despite of the fact that the first measure
is widely used in combinatorial optimization, we preferred the second one. The
reason behind this choice is a sensitivity If(fhey) to constant transformations

of any of the matricedV and D. In other words, the valug’(fey) for QAP with

each nondiagonal entry @ (or each entry of the upper half @ above the main
diagonal) enlarged by a nonzero constant is different from the &l(#,e.) for

the initial QAP. It is clear that in both cases the positions of solutions in their
ordering according to the values gfare the same. Given a QAP instan®g, (D)

and a heuristic solution, one can add a sufficiently large positive constant to, say,
matrix W and obtain an equivalent QAP for which the valuefon the same
solution is sufficiently close to zero. Thus, different estimates for QAPs with the
same structure can be obtained. Obviously, the meds(rgy is free from this
drawback.

The multi-start descent algorithm and all generators described in this paper have
been coded in the C language, and the experiments were done on an IBM PC-
486/80.

To obtain the results presented in this section, we run generators with the input
values given in Table 1. The rows of this table are partitioned into two clusters: the
first containing rows 1 through 8 and the second consisting of the remaining 10
rows. The data in the first cluster were used by all generators, whereas the data in
the second only by GENO, GEN1, GEN2M, GEN5 and GENLP. The first column
of this table shows the dimension of the problem. The second and third give the
number of triangles (selected to modify the mati® for GEN5 and for the rest
of generators except GENLP, respectively. In Sections 3 and 4 this characteristic
is denoted by. Next two columns contain the values used (also to modify
only by GENS5: the number of graphs isomorphichg and, respectively, td1;.

The rule according to whicksens, s andh; are calculated is very simple. We fix
the number=3fe5; Of €dges ineq triangles and use :50.3 and 0.2redges to
define the number of triangles, copieskf and copies ofi;, respectively. Lety;,

GENERATING HARD TEST INSTANCES WITH KNOWN OPTIMAL SOLUTION 151

Table 1. Input to generators

n IGEN5 Irest hsg h7 Set size Grid dimensions
(case of GENO, GENZ1,;
case of GEN2-GEN5, GEN2M, GENLP)

108 1501 3000 269 86 2 9, 17x12
120 1750 3500 315 100 2 1210; 20x 12
132 2250 4500 404 129 2 1211, 19x 12
144 2751 5500 495 157 2 1212; 22x 12
162 3251 6500 584 186 3 189; 25x 18
180 4249 8500 765 243 3 1512, 30x 18
198 5001 10000 899 286 3 1811, 29x 18
216 5999 12000 1080 343 4 ¥812; 33x 24
30 101 200 17 6 6x5 8x8
40 173 350 32 10 8x5 9x9
50 301 600 54 17 10x 5; 10x 10
60 451 900 80 26 10x 6; 11x11
70 599 1200 109 34 10x7; 12x 12
80 801 1600 143 46 10x 8; 13x 13
90 1001 2000 180 57 10x9; 14x 14
100 1250 2500 226 71 10 x 10; 15x 15
120 1750 3500 315 100 12 x 10; 16x 16
150 2751 5500 495 157 15x 10; 18x 18

i > 3, denote the number of edgesif. Clearly, g;=i(i-1)/2,i >3. Since each of
fcens, hs andh; must be an integer, we takgens to be very close but not neces-
sarily equal to 0.6/g; = r/6, hs t0 0.3-/gs = 0.03randh7 to 0.2/g7; = r/105.

For eachn these choices are such that the inequatit{Blgenst10ks+2117)| < 1

is satisfied. This strategy guarantees that for GEN5 the number of modifications of
the entries o is almost the same as for generators based on the triangles only.
The column under heading ‘set size’ gives the size of sets in 3-dimensional match-
ing. This characteristic is used by GEN2—-GEN4. The last column shows the grid
dimensions which for GENO and GENL1 (the first member of the pair) are different
from those for GEN2-GENS5, GEN2M, GENLP (the second member of the pair).
In the case of GEN2-GEN4 the grid dimensions do not belong to the input but are
computed at the beginning of generation procedure. For the first 8 valudbede
computed dimensions were used by GEN5, GEN2M and GENLP. Remember that
the reduction from 3DM to QAP can be simulated and, therefore, each of GEN2—
GEN4 applied only if» >108 (see Remark 2, Section 3). For the rest values of
GEN2M, GEN5 and GENLP were run with square grids containimg2slightly

more points. For GEN1, in all cases the number of grid points appeared to be equal
to the number of objects. Some parameters are not presented in the table. The value

152 G. PALUBECKIS

Table 2. Comparison of generators using multi-start descent (for each generator,
minimal values ofK over 10 starts in the first row, and averages in the second row)

Problem size
Generator 108 120 132 144 162 180 198 216

GENO 3.5 0.1 14 2.1 1.2 2.1 1.7 18
9.0 9.1 7.0 6.8 8.4 7.9 7.3 6.5

GENLP 3.9 2.2 1.6 2.8 0.9 2.0 1.9 4.3
8.7 5.6 4.5 7.2 8.8 6.6 6.9 10.2

GEN1 55 54 4.9 4.9 5.6 4.1 3.9 2.7
121 8.9 12.2 9.4 10.4 7.6 7.1 8.3

GEN2 6.3 6.7 5.8 54 5.4 55 5.2 6.7
8.2 10.7 11.5 10.1 10.9 10.5 9.3 10.9

GEN3 8.3 4.6 4.7 7.1 7.3 6.1 4.0 6.4
12.5 10.9 11.0 9.6 10.4 11.8 8.9 12.1

GEN4 7.6 8.9 7.1 6.4 8.5 5.7 5.7 5.5
13.0 12.7 11.0 11.0 135 10.2 10.9 10.1

GEN5 8.0 7.2 51 6.0 4.4 6.1 3.7 2.3
12.3 111 13.7 12.4 11.4 12.0 11.4 11.6

Table 3. Number of instances solved optimally (25 instances tried
for each entry of the table)

Problem size; number of starts of descent
Generator 30; 1000 40;500 50;200 60;100 70;50

GENO 25 25 20 22 21
GENLP 25 25 17 14 3
GEN1 23 18 15 10 1
GEN2M 24 19 15 2 2
GENS 8 8 9 1

of w in all the experiments was set to 10. In GENO, the same value was used as
a constant assigned to entriesWf The values of the other parameters were the
following: yhound = 5, A4 = 100 for GENLP (A, is defined in Li and Pardalos
(1992)), x7 = x5 = 10n for GENS5 (x5 is the bound on the number of failures in
choosing a copy offs and is similar toy; defined in Section 4).

The main results of experiments are summarized in Tables 2-5. To obtain Table
2, the first data cluster in Table 1 was used. For eaatrailable one QAP instance
was created by each generator. To solve an instance, the descent procedure was
applied to 10 random starting solutions. Sufficiently large computing times did not
allow increasing the number of starts. For example,#e198 10-start descent
took more than 2 hours on an IBM PC-486/80 for GENO—GENS and more than 1.5
hours for GENLP. As it can be seen from the table, the best valué fafr both
GENO and GENLP is significantly smaller than for the other generators. Among
these GEN4 can be distinguished for which this value is largest in a half of cases.

GENERATING HARD TEST INSTANCES WITH KNOWN OPTIMAL SOLUTION 153

Table 4. The quality of solutions obtained in 1.5-2.5 hours of com-
puter time (minimal values oK in the first row, and averages in the
second row)

Problem size; number of starts of descent
Generator 80;270 90;170 100;120 120;60 150; 30

GENO 0.3 0.3 0.2 0.1 0.5
8.7 9.8 8.4 8.7 8.3

GENLP 1.9 1.4 14 0.7 4.0
10.7 9.6 10.2 8.5 9.3

GEN1 2.0 1.7 3.3 4.5 5.3
12.2 11.6 11.0 10.4 9.2

GEN2M 0 2.1 57 2.6 5.8
13.5° 12.6 115 10.2 111

GEN5 0.5 1.8 5.4 4.2 6.0
16.5 14.9 14.8 125 13.2

*The average for 144 starts (after reaching an optimal solution).

Table 5. Computational results for problems produced by GEN4 tuned to simulate
the reduction from 3DM to QAP (10 starts of descent for each

n t Kmin Kave
108 184 6.8 7.5
120 208 6.6 7.3
132 232 7.1 7.8
144 256 6.5 7.4
162 276 6.2 6.8
180 312 5.3 5.9
198 348 4.5 6.3
216 368 4.4 54

Table 3 contains the results of the most interesting, in our opinion, experiment.
Multi-start descent was applied to smaller size QAP instances produced by five
generators. GEN3 and GEN4 were not run since they are working onty*dr08.

GENZ2 was represented by its modification GEN2M. The table shows how many
instances (out of 25) were solved to optimality in each case defined by the pair
(generator; problem size). The number of starts of descent was limited by com-
puting time resources. Under the given values of the number of starts the worst-case
time of solving one instance is about 10 min on our computer fgr30 and about

15 min for the rest. Here and below, the term ‘worst-case’ is used to characterize
situation when multi-start descent fails to reach an optimum. As it follows from
Table 3, the hardest QAP instances (for multi-start descent, of course) are generated
by GENS5. Even problems of size=30 are not easily solvable. The results for

154 G. PALUBECKIS

GEN2M and GENL1 are quite similar except the caseo60. As expected, the
easiest QAP instances are produced by GENO.

The results for larger are displayed in Table 4. The data were taken from the
second cluster in Table 1. The number of starts of descent was selected to keep
the worst-case solution time between 2 and 2.5 hours on an IBM PC-486/80 for
each of GENO, GEN1, GEN2M and GENS5. For GENLP this time was smaller,
about 1.5 hours. In this table, the sums of the minimal valuek dor GEN1,
GEN2M and GENS5 are similar. GENO is again in the last position. Particularly, the
results in Tables 2—4 confirm the assertion made by Li and Pardalos (1992) that the
QAPs produced by their second generator are harder for QAP heuristics than those
generated by the algorithm proposed by Palubeckis (1988), that is, by GENO.

Table 5 presents computational results for QAP instances produced by GEN4
tuned to mimic the reduction used to prove Theorem 2. The number of triangles
(second column of the table) was taken equal gpecified in this proof. In this re-
gime of GEN4, an instance of 3DM with a positive answer is constructed randomly,
whereas all object locations on the grid and all triangles (but not their weights) are
selected deterministically. The valuesmofind ‘set size’ were extracted from the
first cluster in Table 1. For eaehone problem was generated. To each problem 10-
start descent was applied. The third and fourth columns of the table list the minimal
and, respectively, the average valueskofor solutions obtained. We see that the
values of Knin in Table 5 are smaller, except two cases, than the corresponding
values for GEN4 in Table 2 but are larger than those for some other generators, for
example GENL1.

Closing this section we should mention that the results obtained when the meas-
ure K’ instead ofK is used are slightly different. For example, from the analogue
of Table 2 prepared using’ it follows that GENLP and GENO are the best (the
minimal values ofK’ are largest) leaving GEN4 in the third place. The values of
K,.n replacingKmi, in Table 5 are 10 times less than the valuek6for GEN4 in

the general case. F@f, they are comparable.

6. Conclusions

In this paper we defined a set whose members are rectilinear QAP instances, con-
structed using triangles, with known provably optimal solutions. We have proved
that this set is hard, that is, no polynomial-time approximation algorithm for the
QAP exists, unless P=NP, which can solve each instance in the set . We have shown
that the set remains such for the grid of size (asymptotically) close to the number of
objects. Besides these main results, we have established a zero lower bound on the
minimal value of the objective function for QAP instances whose flow matrices
are defined by special graphs, named PB-graphs, and for one important type of
such graphs provided a characterization of point sets on the plane when this bound
is tight. As an example, we gave another hard set consisting of QAP instances for
construction of which special procedures for making the copies of PB-graphs larger
than triangles are applied.

GENERATING HARD TEST INSTANCES WITH KNOWN OPTIMAL SOLUTION 155

We have described a series of generators with hard output sets of instances with
known optimal solutions and compared these and also two existing generators from
the literature using the well-known multi-start descent heuristic. It follows from
the experiments that with regard to obtaining optimal or close to optimal solutions
within a reasonable amount of time the instances produced are hard enough for
this heuristic. In fact, for the number of objects about 100, hours of IBM PC-type
computer time are required. Based on the results of experimentation, the generator
GEN2M can be recommended for its simplicity and sufficient hardness of QAP
instances created. At least for smaltethe more difficult problems are obtained
using GENS5. We expect that the instances produced by the generators in the series
may appear rather difficult for other algorithms for the QAP as well.

Finally, we remark that the PB-grapl$, i > 5, can be used not only for
instance generation purposes (as in GEN5) but also to improve lower bounds on the
optimal value for the QAPs. A lower bounding algorithm of such type is presented
in Palubeckis (1997).

Acknowledgments

| wish to thank the anonymous referees for their detailed comments and suggestions
that led to this improved version of the paper.

References

Battiti, R. and Tecchiolli, G. (1994), The Reactive Tabu Sea@RSA J. on Computing, 126—140.

Burkard, R.E. (1984), Quadratic Assignment ProbleEisopean J. of Operational Researdh,
283-289.

Burkard, R.E., Cela, E., Pardalos, P.M. and Pitsoulis L.S. (1998), The Quadratic Assignment Prob-
lem, SFB Report 126, Institute of Mathematics, Technical University Graz, Austria, to appear
in Pardalos, P.M. and Du, D.-Z. (edshlandbook of Combinatorial OptimizatiprKluwer
Academic Publishers, Dordrecht/Boston/London.

Burkard, R.E., Karisch, S.E. and Rendl, F. (1997), QAPLIB - A Quadratic Assignment Problem
Library, J. of Global Optimizatiori0, 391-403.

Burkard, R.E. and Rendl, F. (1984), A Thermodynamically Motivated Simulation Procedure for
Combinatorial Optimization ProblemEuropean J. of Operational Researth, 169—-174.

Cela, E. (1998);The Quadratic Assignment Problem: Theory and AlgorithKlswer Academic
Publishers, Dordrecht/Boston/London.

Clausen, J. and Perregaard, M. (1997), Solving Large Quadratic Assignment Problems in Parallel,
Computational Optimization and ApplicatioBs111-127.

Connolly, D.T. (1990), An Improved Annealing Scheme for the QB&opean J. of Operational
Research16, 93-100.

Cyganski, D., Vaz, R.F. and Virball, V.G. (1994), Quadratic Assignment Problems Generated with
the Palubetskis Algorithm Are DegeneratBEE Transactions on Circuits and Systemg
Fundamental Theory and Applicatiod4, 481-484.

Dyer, M.E. and Frieze, A.M. (1985), On the Complexity of Partitioning Graphs into Connected
SubgraphsDiscrete Applied Mathematick), 139-153.

Feo, T.A. and Resende, M.G.C. (1995), Greedy Randomized Adaptive Search Procéduofes,
Global Optimizatior6, 109—-133.

Finke, G., Burkard, R.E. and Rendl, F. (1987), Quadratic Assignment Probdemals of Discrete
Mathematics31, 61-82.

156 G. PALUBECKIS

Fleurent, C. and Ferland, J.A. (1994), Genetic Hybrids for the Quadratic Assignment Problem,
DIMACS Series in Discrete Mathematics and Theoretical Computer Scléhde 3—-187.

Gambardella, L.M., Taillard, E.D. and Dorigo, M. (1997), Ant Colonies for the QAP, Tech-
nical Report IDSIA-4-97, Istituto Dalle Molle di Studi sull'Intelligenza Atrtificiale, Lugano,
Switzerland.

Garey, M.R. and Johnson, D.S. (197@omputers and Intractability: A Guide to the Theory of
NP-Completenes$V.H.Freeman and Co., San Francisco.

Gilmore, P.C. (1962), Optimal and Suboptimal Algorithms for the Quadratic Assignment Problem,
J. SIAM10, 305-313.

Hasselberg, J., Pardalos, P.M. and Vairaktarakis, G. (1993), Test Case Generators and Computational
Results for the Maximum Clique Probleth,of Global Optimizatior8, 463—482.

Lawler, E.L. (1963), The Quadratic Assignment Problétanagement Scien& 586-599.

Li, Y. and Pardalos, P.M. (1992), Generating Quadratic Assignment Test Problems with Known
Optimal PermutationsZomputational Optimization and Applicatiofis163—184.

Li, Y., Pardalos, P.M., Ramakrishnan, K.G. and Resende, M.G.C. (1994), Lower Bounds for the
Quadratic Assignment Probleinnals of Operations Researgh, 387-411.

Li, Y., Pardalos, P.M. and Resende, M.G.C. (1994), A Greedy Randomized Adaptive Search Pro-
cedure for the Quadratic Assignment ProblddiMACS Series in Discrete Mathematics and
Theoretical Computer Sciend®, 237-261.

Mautor, T. and Roucairol, C. (1994), A New Exact Algorithm for the Solution of Quadratic
Assignment Problem®iscrete Applied Mathematidsb, 281-293.

Murthy, K.A., Pardalos, P.M. and Li, Y. (1992), A Local Search Algorithm for the Quadratic
Assignment Probleminformatica3, 524-538.

Palubeckis, G.S. (1988), A Generator of Quadratic Assignment Test Problems with Known Op-
timal Solution, U.S.S.R. Computational Mathematics and Mathematical Phyz8cs97-98.
[Translated fronzh. Vychisl. Mat. Mat. Fiz28, 1740-1743.]

Palubeckis, G. (1997), The Use of Special Graphs for Obtaining Lower Bounds in the Geometric
Quadratic Assignment Problemmformatica8, 377—400.

Pardalos, P.M., Rendl, F. and Wolkowicz, H. (1994), The Quadratic Assignment Problem: A Survey
and Recent Developmentf®)MACS Series in Discrete Mathematics and Theoretical Computer
Sciencel6, 1-42.

Pardalos, P.M., Resende, M.G.C. and Li, Y. (1996), FORTRAN Subroutines for Approximate
Solution of Dense Quadratic Assignment Problems Using GRASR Transactions on
Mathematical Softwarg@2, 104—-118.

Pardalos, P.M., Resende, M.G.C. and Pitsoulis, L.S. (1997), Algorithm 769: FORTRAN Subroutines
for Approximate Solution of Sparse Quadratic Assignment Problems Using GRAGSH,
Transactions on Mathematical Softwé8, 196—208.

Sanchis, L.A. (1990), On the Complexity of Test Case Generation for NP-Hard Prothdarsa-
tion Processing Letter36, 135-140.

Sanchis, L.A. and Jagota, A. (1996), Some Experimental and Theoretical Results on Test Case
Generators for the Maximum Clique ProblelRFORMS J. on Computing, 87—102.

Skorin-Kapov, J. (1990), Tabu Search Applied to the Quadratic Assignment PradbR8A J. on
Computing2, 33-45.

Taillard, E. (1991), Robust Taboo Search for the Quadratic Assignment Prdbdeatiel Computing
17, 443-455.

Taillard, E.D. (1995), Comparison of Iterative Searches for the Quadratic Assignment Problem,
Location Scienc8, 87-105.

Tate, D.M. and Smith, A.E. (1995), A Genetic Approach to the Quadratic Assignment Problem,
Computers and Operations Resea) 73-83.

Wilhelm, M.R. and Ward, T.L. (1987), Solving Quadratic Assignment Problems by Simulated
Annealing,|IEEE Transactiond9, 107-119.

