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Abstract. In this paper we consider the rectilinear version of the quadratic assignment problem
(QAP). We define a class of edge-weighted graphs with nonnegatively valued bisections. For one
important type of such graphs we provide a characterization of point sets on the plane for which
the optimal value of the related QAP is zero. These graphs are used in the algorithms for generating
rectilinear QAP instances with known provably optimal solutions. The basic algorithm of such type
uses only triangles. Making a reduction from 3-dimensional matching, it is shown that the set of
instances which can be generated by this algorithm is hard. The basic algorithm is extended to
process graphs larger than triangles. We give implementation details of this extension and of four
other variations of the basic algorithm. We compare these five and also two existing generators
experimentally employing multi-start descent heuristic for the QAP as an examiner. The graphs with
nonnegatively valued bisections can also be used in the construction of lower bounds on the optimal
value for the rectilinear QAP.
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1. Introduction

Given a finite setN = {1,2, . . . , n} and threen×nmatricesW = (wij ),D = (dij )
and9 = (9ij )with real entries, thequadratic assignment problem(QAP) is to find
a permutationp of the setN such that the sum

f (p) =
∑
i∈N

∑
j∈N

wijdp(i)p(j) +
∑
i∈N

ψip(i) (1)

is minimized. When the matrixD is composed of the shortest rectilinear distances
between pairs ofn points in the Euclidean space, the problem given by (1) is called
rectilinear QAP. This problem is an important case of theEuclidean QAPin which
the entries of the matrixD are required to fulfill the triangle inequality. We assume
in this paper that the space from which the points are taken is two dimensional,
i.e., the plane. We also assume without loss of generality that the lower half ofW

under the main diagonal is zero, i.e.,wji = 0 for all i, j such thati<j . Indeed, if



128 G. PALUBECKIS

wji 6= 0 for some pairi, j, i<j , then we can replacewij with wij+wji (sinceD is
a symmetric matrix). Also, the main diagonal of the matrixW can be made zero
because such is the main diagonal ofD.

A typical example of the Euclidean QAP is the facility location problem, in
whichn given facilities are to be assigned to the same number of locations. In this
interpretation,D is the matrix of distances, maybe rectilinear, between locations,
andW = (wij ) is the flow matrix, i.e.,wij is the flow of materials from facilityi to
facility j . The cost of simultaneously assigning facilityi to locationk and facility
j to locationl is given by the productwijdkl . The fixed cost of assigning facility
i to locationk is given by the entry9ik of the matrix9 . The objective is to find
a one-to-one assignment ofn facilities ton locations, i.e., a permutationp, such
that the total cost of the assignment is minimized. For other applications of the
QAP, frequently its Euclidean version, see the reviews by Burkard (1984), Finke,
Burkard and Rendl (1987), Pardalos, Rendl and Wolkowicz (1994), Burkard, Çela,
Pardalos and Pitsoulis (1998), and the recent book by Çela(1998).

The QAP is an NP-hard problem for which exact algorithms are able to solve
only instances of size less than 25 (see, e.g., Mautor and Roucairol, 1994; Clausen
and Perregaard, 1997). So, for larger QAP instances different heuristics are widely
used. The existing heuristic algorithms for the QAP include those based on sim-
ulated annealing (Burkard and Rendl, 1984; Wilhelm and Ward, 1987; Connolly,
1990), genetic (Fleurent and Ferland, 1994; Tate and Smith, 1995), tabu search
(Skorin-Kapov, 1990; Taillard, 1991; Battiti and Tecchiolli, 1994), greedy random-
ized adaptive search (Li, Pardalos and Resende, 1994; Pardalos, Resende and Li,
1996; Pardalos, Resende and Pitsoulis, 1997; see also Feo and Resende, 1995)
and ant system (Gambardella, Taillard and Dorigo, 1997) techniques. Usually, the
heuristic algorithms are tested using randomly generated QAP instances or stand-
ard test problems in the literature. The latter are collected into a special library,
called QAPLIB (Burkard, Karisch and Rendl, 1997). However, both for larger
problems in QAPLIB and for larger instances produced by traditional generators
the optimal solutions are not known. Testing and evaluation of a heuristic is more
complete when, together with benchmarks from QAPLIB, instances with an apriori
known optimal solution or just optimal value were used. In this context, the design
of special generators producing such instances is an important problem. For the
rectilinear QAP such a generator was proposed by Palubeckis (1988). Later Li and
Pardalos (1992) provided a general schema and two generators based on it for ar-
bitrary (not necessarily Euclidean) QAP. The instances created by these generators
were used to test three heuristics for the QAP: simulated annealing (Burkard and
Rendl, 1984), tabu search (Skorin-Kapov, 1990) and graph-partitioning (Murthy,
Pardalos and Li, 1992). The computational results provided by Li and Pardalos
(1992) show that such instances are not easy for these heuristics with regard to
both the solution quality and solution time.

Given a generator for the QAP or any other problem in combinatorial optim-
ization, the following question is very important: whether the set of instances
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produced by this generator is hard or not. The definition of hardness was sug-
gested by Sanchis (1990). The set is hard if no polynomial-time algorithm solves
each problem in this set, unless P = NP (a more formal definition of hardness is
given in the next section). The generators with hard output sets were developed for
several optimization problems on graphs, for example, for the well-known max-
imum clique problem (Sanchis and Jagota, 1996; see also Hasselberg, Pardalos and
Vairaktarakis (1993) for an implementation of such a generator). In this paper we
present several algorithms for generating instances with known optimal solution
for the rectilinear QAP and compare them experimentally with existing generat-
ors. These algorithms are similar to the generator proposed by Palubeckis (1988).
As shown by Cyganski, Vaz and Virball (1994), the decision problem for QAP
instances produced by this generator, and even its generalizations, is polynomially
solvable. On the other hand, the computational complexity of these instances in a
sense of the definition of hardness given above is actually an open question and
will be settled in the current paper – we shall prove that the problem of finding an
optimal solution for these instances is NP-hard.

The paper is organized as follows. In Section 2 we introduce some preliminar-
ies. Particularly, we define a class of edge-weighted graphs with nonnegatively
valued bisections and show that the optimal value of the quadratic assignment
problems related to these graphs is nonnegative. For one important type of such
graphs we provide a characterization of point sets on the plane for which this
bound is tight. In Section 3 we present our basic algorithm for generating rectilinear
QAP instances with known optimal solutions. To construct a distance matrix, the
algorithm uses some subset of points taken from the 2-dimensional grid. The flow
matrix is obtained as a composition of matrices corresponding to triangles having
one negative and two positive edges. The matrix9 in this and other generators
considered in this paper is zero. We prove that the set of instances which can be
generated by this algorithm is hard. For this we use 3-dimensional matching –
the well-known NP-complete problem. We also prove that the set remains hard
for the grid of size (asymptotically) close to the number of objects. We extend the
basic generator to process graphs larger than triangles. The details of this extension
together with three implementations of the basic algorithm and one additional gen-
erator are provided in Section 4. The results of experimental comparison of these
and also two existing generators are given in Section 5. The results are obtained
using multi-start descent heuristic for the QAP. In Section 6 we remark that the
graphs with nonnegatively valued bisections can also be used in the construction
of lower bounds on the optimal value for the rectilinear QAP.

2. Definitions and preliminaries

In this section we present some definitions and basic facts used in the construction
and characterization of QAP instances.
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We denote a graph byG = (V ,E) whereV is the set of vertices andE is the
set of edges (unordered pairs of vertices), and a digraph byB = (V ,A) whereV
is the set of vertices as before andA is the set of arcs (ordered pairs of vertices).
All the graphs and digraphs considered in this paper are without loops. Usually,
the edges of a graphG = (V ,E) will be supplied with weightscij , (i, j) ∈ E. We
assume throughout the paper thatcij andcji denote the same object – the weight of
the edge(i, j) ∈ E. A path Pk(v, v′) of lengthk > 1 in B = (V ,A) is a digraph
with vertex set{v1 = v, v2, . . . , vk+1 = v′}, vi ∈ V, i = 1, . . . , k + 1, and arc set
{(vi, vi+1)|i = 1, . . . , k}.

Given a flow matrixW , we can construct a graphG(W) = (V (W),E(W))
whose vertex set corresponds to the set{i|i ∈ N and there isj ∈ N such that
wij 6= 0 orwji 6= 0}, whose edge setE(W) = {(i, j)|i, j ∈ N , wij 6= 0}, and
whose edge weightscij = wij , (i, j) ∈ E(W). Conversely, to any graphG =
(V ,E), V ⊆ N , we can associate ann×n flow matrixW(G) with nonzero entries
defined by the edges ofG, i.e., withwij = cij (if i < j ) or wji = cij (if i > j ) if
(i, j) ∈ E, andwij = 0 otherwise.

All the distance matrices considered in this paper are defined by some set of
points on the plane. We will writeD(S) to denote such a matrix for a setS. For
s = (x, y), s′ = (x′, y′) ∈ S the corresponding entry ofD(S) is equal tod(s, s′) =
|x − x′| + |y − y′|. The sum of all entries ofD is denoted by6(D).

Given integersnx > 1, ny > 1, we define aregular 2-dimensional(or, more
precisely, regularnx × ny) grid Q(nx, ny) as a set{(i, j)|i = 1, . . . , nx, j =
1, . . . , ny} of points on the plane. Thesizeof the gridQ(nx, ny) is the product
nxny.

We denote the optimal value of (1) with zero9 by f0(W,D).
We use the following definition taken from Sanchis (1990).

DEFINITION 1. Let5 be an NP-hard optimization problem. A setI of instances
of 5 is hard with respect to5 if no polynomial-time approximation algorithm for
5 can give the optimal answer for all instances inI , unless P = NP.

The following obvious fact describes a decomposition principle the reverse of
which, i.e. composition, stands at the basis of the instance construction procedure.

LEMMA 1. If W = W1 +W2 andD is a distance matrix, then

f0(W,D) > f0(W1,D)+ f0(W2,D).

Note that this lemma holds for an arbitrary distance matrix, not necessarily the
rectilinear one.

Clearly, if some solutionp is optimal for each of the problems corresponding
toW1 andW2, thenp is also optimal for the initial problem defined by the matrix
W .

Next we introduce a special class of edge-weighted graphs and give a bound on
the optimal value off for members of this class.
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DEFINITION 2. A graphG = (V ,E) with edge weightscij , (i, j) ∈ E, is aPB-
graph(has nonnegatively valued bisections) if the sum�(G,V ′) of the weights in
the set{cij |(i, j) ∈ E, i ∈ V ′, j ∈ V \V ′ or i ∈ V \V ′, j ∈ V ′} is nonnegative for
each subsetV ′ ⊂ V .

LEMMA 2. If W is such thatG(W) is a PB-graph, then for any rectilinear dis-
tance matrixD

f0(W,D) > 0. (2)

Proof.Suppose we are givenn points defining the matrixD, and letx1, . . . , xn
be theirx-coordinates sorted nondecreasingly. This sorting defines some ordering
of the points. LetSix , i ∈ {1, . . . , n − 1}, denote the set consisting of the firsti
points in this ordering. Lety1, . . . , yn andSjy , j = 1, . . . , n − 1, be the list and
sets defined analogously with respect to they-axis. Using the expression for the
entry of the rectilinear distance matrix we can write

f0(W,D) =
n−1∑
i=1

�(G(W), Vix)(xi+1 − xi)+
n−1∑
j=1

�(G(W), Vjy)(yj+1− yj )

whereVix (respectively,Vjy) is the set of the vertices ofG(W) corresponding to
objects assigned by an optimal permutation to the points inSix (respectively,Sjy).
The nonnegativity of the optimal value now follows from the inequalitiesxi+1 >
xi, yj+1 > yj , i, j = 1, . . . , n − 1, and�(G(W), V ′) > 0 for any vertex subset
V ′ and thus forVix andVjy , i, j = 1, . . . , n− 1. 2

In this paper we are interested in PB-graphs which are signed graphs, that is,
have all edge weights equal to 1 or−1. Perhaps, the simplest signed PB-graphs are
cycles with one negative edge and the remaining edges being positive. The smallest
such cycle, namely, the triangle with one negative and two positive edges is used
in generators described in Palubeckis (1988) and Li and Pardalos (1992). Another
type of signed PB-graphs can be defined as follows. Letl, l > 3, be the number of
vertices of a graph. The vertex setV is divided into two subsetsV1, V2 such that
|V1| = dl/2e, |V2| = l−|V1|. The edge setE is complete and consists of the subset
E+ = {(i, j)|i ∈ V1, j ∈ V2} of positive edges and the subsetE− = {(i, j)|i, j ∈
V1 or i, j ∈ V2} of negative edges. We denote this graph byHl = (V ,E). It is easy
to verify thatHl for any l > 3 satisfies the condition given by Definition 2, so is a
PB-graph.

For l > 3, letWl = W(Hl) denote the flow matrix corresponding toHl. In
the construction of QAP instances we useHl, l > 3, together with a point setS
for which f0(W

l,D(S)) = 0. Now we address the problem of characterization of
point sets having this property.

Let S = {si = (xi, yi)|i = 1, . . . , l} be a set of points on the plane, and
X = {Xj |j = 1, . . . , q} (respectively,Y = {Yk|k = 1, . . . , r}) be the minimal
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Figure 1. Directed graphB(S, p) (on the right) for setS and identity permutationp (on the
left).

increasingly ordered set of vertical (respectively, horizontal) lines on which points
of S are located. So, each point is defined by some pair of lines, one vertical and
another horizontal, and each line contains at least one point ofS. For a pointsi ∈ S,
we denote this pair byX(si) ∈ X,Y (si) ∈ Y . Given a point setS and some assign-
mentp of the vertices ofHl = (V1 ∪ V2, E) to the points inS, we can construct a
directed graphB(S, p) = (V = V (X)∪U(Y ),A)whose vertex subsetsV (X) and
U(Y ) correspond toX andY , respectively, i.e.,V (X) = {v(Xj)|j = 1, . . . , q},
U(Y ) = {u(Yk)|k = 1, . . . , r}, wherev(Xj), j ∈ {1, . . . , q}, (respectively,u(Yk),
k ∈ {1, . . . , r}) is the vertex associated with the vertical lineXj ∈ X (respectively,
with the horizontal lineYk ∈ Y ), and whose arc setA corresponds top and is
the union of the following disjoint sets:{(v(Xj), u(Yk))|Xj = X(si), Yk = Y (si)
for somesi ∈ S, andp(v) = i for somev ∈ V2}, {(u(Yk), v(Xj))|Xj = X(si),
Yk = Y (si) for somesi ∈ S, andp(v) = i for somev ∈ V1}. Thus for two
different assignmentsp andp′ the digraphsB(S, p) andB(S, p′) may differ only
in orientation of some of their arcs. We denote byδin(Xj) (respectively,δout(Xj))
the number of arcs inA whose head (respectively, tail) is the vertexv(Xj). So,
δ(Xj):=δin(Xj) +δout(Xj) is the total number of arcs incident tov(Xj). The values
δ(Yj), δin(Yj ) andδout(Yj ) are defined analogously.

EXAMPLE 1. Consider the setS = {(1,3), (2,3), (2,2), (3,2), (4,2),
(2,1), (3,1)}. For this set,X = {1,2,3,4}, Y = {1,2,3}. For illustration of the
digraph we can choose the identity permutationp = (1,2, . . . ,7) defined on the
setV = V1∪V2,V1 = {1,2,3,4}, V2 = {5,6,7}. Usingp, vertexi ∈ V is assigned
to the pointsp(i) = si ∈ S (see Figure 1a). The digraphB(S, p) for the setS and
permutationp is shown in Figure 1b, where the vertices inV (X) (respectively, in
U(Y )) form the left (respectively, right) column. It should be clear that this digraph
represents a group of permutations obtained fromp by permuting the first 4 and
the last 3 elements ofp independently.

Now we will characterize the digraphsB for which the underlying assignment
p is optimal and the optimal value is 0. LetJ (X) denote the set of indicesj ∈
{1, . . . , q} such thatδ(Xj) is odd. Obviously,|J (X)| is even if and only ifl is even.
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AssumingJ (X) = {j1, . . . , ju}, u > 1, for oddl, defineJ1(X) = {j1, j3, . . . , ju}
(or J1(X) = {j1} if u = 1) andJ2(X) = {j2, j4, . . . , ju−1} (or J2(X) = ∅ if u =
1). LetJ (Y ), J1(Y ), J2(Y ) be the analogous sets with respect to they-coordinate.
Define1(Xj) = δin(Xj)−δout(Xj),1(Yk) = δin(Yk)−δout(Yk).1(Xj) = 0 means
that a half of the vertices in the set{v ∈ V |sp(v) is onXj } belongs toV1 and the
other half toV2. Furthermore, for oddl the sum of1(Xj ) taken over the index set
{1, . . . , q} is equal to 1.

LEMMA 3. LetS be a set ofl points on the plane. A permutationp described by
the digraphB(S, p) is optimal andf0(W

l,D(S)) = 0 if and only if:

for l even, 1(Xj) = 0 for eachj = 1, . . . , q, and

1(Yk) = 0 for eachk = 1, . . . , r;

for l odd, 1(Xj) =


1 if j ∈ J1(X)

−1 if j ∈ J2(X)

0 if j ∈ {1, . . . , q}\J (X)
(3)

and

1(Yk) =


−1 if k ∈ J1(Y )

1 if k ∈ J2(Y )

0 if k ∈ {1, . . . , r}\J (Y ).
(4)

Proof.Consider a vertical line specified by the x-coordinatex greater than that
for X1 and smaller than that forXq . We can assume that this line is different from
the lines in the setX. Let l1 (respectively,l2) be the number of vertices inV1

(respectively, inV2) which are assigned byp to the points ofS at the left of the
line x. Conditions of the lemma imply that eitherl1 = l2 or |V1|− l1 = |V2|− l2. So
the number of positive edges crossing the linex is equal to the number of negative
edges crossing the same line. The same holds for y-direction as well. Therefore,
f (p) = 0, and by (2) the solutionp is optimal.

To prove the ‘only if’ part, suppose thatp is an optimal permutation with
zero optimal value, but the conditions of the lemma for the corresponding digraph
B(S, p) are violated. We will derive a contradiction to this statement. Without loss
of generality, we may assume that the value of1 is different than that required by
the lemma for at least one vertical line inX. Letq ′ be the number of such lines and
Xi be the leftmost of them. Since by the definition of the setA and function1 the
sum

∑q

j=11(Xj) = |V1| − |V2| = 0 or 1 depending on the parity ofl, it follows
thatq ′ > 2. Therefore,i < q.

Consider any vertical line, sayx′, located strictly betweenXi andXi+1. Let
l1, l2 have the same meaning as before, except that now these numbers are defined
with respect to the linex′ instead ofx. Clearly, if l is even, thenl1 6= l2. If l is
odd, then eitherl1 > l2+ 2 if 1(Xi) is greater than the corresponding constant on
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the right-hand side of (3), orl1 < l2 otherwise. For assignmentp, the total weight
of edges ofHl crossing the linex′ is equal to(l1 − l2)(l1 − l2 + bl/2c − dl/2e).
For l1, l2 specified above this expression is positive implying positivity off (p), a
contradiction to our initial assumption. 2

Now assume thatl is odd. We call a vertexv ∈ B(S, p), v = v(Xj) or u(Yk),
neutral if the corresponding difference1 = 1(Xj) or 1(Yk) is given by (3) or
by (4); otherwise we callv positiveor negativedepending on whether1 is greater
or smaller than the corresponding value on the right-hand side of (3) or (4). We
provide an algorithm for searching an assignmentp satisfying the conditions of
Lemma 3. In fact, the algorithm requires the condition (4) to be met for the initial
assignmentp already. To get such an assignment, we run through the setY , taking
the lineY1 first, thenY2 next and so on. LetYk stand for the line selected andmk
be the number of points on it. Ifk ∈ J1(Y ), then we setm′k := dmk/2e, otherwise
m′k := bmk/2c. We assign anym′k vertices ofV1, which are free (not assigned
earlier), to arbitrarym′k points onYk and anymk−m′k free vertices ofV2 to the rest
points onYk. Upon termination of this procedure we have an assignment, calledy-
compatible, for which (4) is satisfied. So, the algorithm given below tries to balance
1 for the vertices in the setV (X) only. The input besides digraphB(S, p) includes
also the setS. The algorithm goes as follows.

Algorithm BALANCE
1. SetBcurrent := B(S, p).
2. ForBcurrent= (V (X)∪U(Y ),A), check whether the setV−(X) = {v(Xj) ∈
V (X) | v(Xj) is negative} is nonempty. If so, take anyv = v(Xj) ∈ V−(X)
and go to 3. Otherwise go to 5.

3. Try to find a path inBcurrent betweenv and some positive vertex. If failure,
then go to 5. Otherwise lettingP(v, v′) be the path found proceed to 4.

4. Change an orientation of each arc onP(v, v′) to the opposite and return to
2.

5. Assign arbitrarily the vertices ofHl in the subsetV1 to points in{si ∈ S |
(u(Yk), v(Xj)) ∈ A, Xj = X(si), Yk = Y (si)} and the vertices inV2 to the
remaining points inS. Stop with this assignment.

We say that the algorithm ends with a positive answer if it stops whenBcurrent

has no negative vertex. We now estimate the computational complexity of the al-
gorithm. First note thatB(S, p) hasl arcs, so each step has at most linear running
time. Let ξj be the constant on the right-hand side of (3). Each execution of the
loop Step 2-Step 4 diminishes the sum

∑q

j=1 |1(Xj)− ξj | by 4 (since for the first
vertex of the path the value of1 is increased and for the last is decreased by 2). But
this sum can be bounded from above byq+∑q

j=1 δ(Xj) 6 2l. Thus, the algorithm
runs in timeO(l2).

The following pair of conditions provides a characterization of point sets for
which the equality in (2) with respect toWl is obtained.
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THEOREM 1. LetS be a set ofl > 3 points on the plane andX (respectively,Y )
be the set of vertical (respectively, horizontal) lines passing through the points in
S. f0(W

l,D(S)) = 0 if and only if:
for l even, each line inX ∪ Y contains an even number of points ofS;
for l odd, the algorithm BALANCE applied to any y-compatible assignment

ends with a positive answer.
Proof. First consider the case of oddl. Suppose on contrary that for some

assignmentp0 f (p0) = 0 = f0(W
l,D(S)) yet the algorithm stops with some

assignmentp′ having at least one negative vertex in the corresponding digraph
B(S, p′) = Bcurrent. From the definition of the digraph and classification of its
vertices into neutral, positive and negative it follows thatB(S, p′)must also contain
at least one vertex which is positive.

For B(S, p′) = (V ,A), defineA∗ = {a ∈ A| orientation ofa in B(S, p′) is
different from that inB(S, p0)}. Let B∗ be the subdigraph ofB(S, p′) induced
by the arc setA∗. Suppose that1 is defined with respect toB∗. Clearly, for a
vertexv = v(Xj) the following holds:1(Xj) < 0 if v is negative (inB(S, p′)),
1(Xj) > 0 if v is positive, and1(Xj) = 0 if v is neutral. In addition,1(Yk) = 0
for any vertexu(Yk), k ∈ {1, . . . , r}.

Let v1 be any negative vertex ofB∗. Take some arc (v1, v2) ∈ A∗ and consider
the vertexv2. This vertex is neutral and, therefore, necessarily has at least one
outcoming arc. Append any such arc, say (v2, v3), to (v1, v2). Continuing this way
(under the restriction that each arc can be taken only once) we obtain some path
Pt(v1, vt ) ending at some positive vertex. Note that the last vertex in this path
cannot be neutral or negative since such vertices have at least as many outcoming
arcs as incoming. Clearly, the pathPt is a subgraph ofB(S, p′) and can be found
in Step 3 of BALANCE, a contradiction to our initial assumption.

The ‘if’ part of the proof for oddl follows directly from Lemma 3.
Suppose now thatl is even and the condition of the theorem is satisfied. We can

consider a solutionp for which1(Yk) = 0 for eachk = 1, . . . , r. Similarly as
in the case of oddl we call a vertexv(Xj) negative if1(Xj ) < 0 and positive if
1(Xj) > 0. If p is such thatf (p) > 0, then the digraphB(S, p) always contains
a path from any negative vertex to some positive one. Reversing an orientation of
each arc on this path we obtain a new assignment with the sum of negative1 closer
to 0. Repeating this operation would result in the assignmentp with f (p) = 0. If
the condition of the theorem does not hold, then for any assignment the difference
1(Xj) 6= 0 for at least one index in{1, . . . , q}, and thus by Lemma 3f0 > 0. The
proof is complete. 2
COROLLARY. For H3 andS consisting of three points the optimal valuef0 = 0
if and only if one of the points inS lies inside the minimal rectangle enclosing the
other two points ofS.

Proof. We will characterize digraphsB(S, p) describing y-compatible assign-
ments for which BALANCE fails to end with a positive answer. If| X |= 2 or
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Figure 2. Set of points (a) and directed graph (b) for which BALANCE fails.

3, | Y |= 3, then such digraphs must have an arc(v(Xj), u(Y2)), j ∈ J1(X). If
| X |= 3, | Y |= 2, then they must have an arc(u(Yk), v(X2)), k ∈ J1(Y ). Using
definition of the setJ1 for X andY we can ascertain that in each of these cases
the condition stated in the corollary is violated. In all other cases BALANCE ends
with a positive answer, and as can be readily checked the condition of the corollary
is satisfied. 2
REMARK 1. Checking conditions of the theorem is polynomial in time. For odd
l, this follows from the polynomiality of the algorithm BALANCE.

EXAMPLE 2. Consider the following set of 11 points: (1,2), (1,7), (2,1), (2,6),
(2,8), (3,3), (3,5), (3,6), (4,4), (4,7), (4,8). For this set,X = {1,2,3,4}, Y =
{1,2, . . . ,8}. Assign the vertices ofH11 in the subsetV1 to points (1,7), (2,1),
(2,6), (3,3), (3,5), (4,8) (in Figure 2a these points are marked “f”) and the vertices
in V2 to the remaining points (in Figure 2a marked “s”). It is easy to see that this
assignment is y-compatible. The corresponding digraph is shown in Figure 2b.
Clearly, J1(X) = {2,4}, J2(X) = {3}. Checking (3) we can conclude that the
vertexv(4) is negative and the vertexv(3) is positive. However, there are no path
between these vertices (fromv(4) to v(3)), so for this setf0 > 0.

3. Hard sets of QAP instances

In this section we first give a description of our main set of instances with known
optimal solutions and prove that this set is hard (in a sense of Definition 1 with
QAP in the role of5). Then we evaluate asymptotically the minimal size of the
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grid used in the construction of these instances. Finally we formulate the set of less
simple instances and show that this set is hard too.

Let n denote the number of points as before and letQ(nx, ny) be 2-dimensional
grid of sizenxny > n. Defineθ = {(i, j ; k)|i, j, k ∈ N are pairwise different}.
Separating the last element in the triplet (i, j ; k) ∈ θ from the first two means that
(i, j ; k) and(j, i; k) denote the same member ofθ . To each triplet(i, j ; k) ∈ θ
and any nonzero scalarα we can associate the graph-triangleT (i, j, k, α) induced
by the edges (i, k), ( j, k) of weightα and the edge (i, j) of weight –α. In fact,
T (i, j, k, α) is a weighted version ofH3 with V = {i, j, k}. GivenQ(nx, ny), n,
n 6 nxny, and positive integerst andw, we can construct an instance of QAP
using the following procedure.

Algorithm GENERATE

1. Choosen points s1, . . . , sn on the gridQ(nx, ny). SetW equal to the all-
zeros matrix. Letθ ′ = {(i, j ; k) ∈ θ |d(si, sk)+ d(sj , sk) = d(si, sj )}.

2. Repeatt times the following operations: choose a triplet(i, j ; k) ∈ θ ′ such
thatwik,wki, wjk, wkj are nonnegative andwij ,wji nonpositive, allowing
possible repetition with some triplet (or triplets) chosen earlier, and an in-
tegerα ∈ [1, w]; setW := W +W(T (i, j, k, α)).

3. Sort the pointssi , i ∈ N , in the order of appearance while scanning the rows
of the grid Q(nx, ny) sequentially. Construct the distance matrix
D({s1, . . . , sn}) in such a way that for anyi ∈ N theith row and column of
D would correspond to theith point in the order obtained.

4. Addwmin := −min{wij |i, j ∈ N, i < j} to each entry ofW above the main
diagonal. Stop with the matricesW andD.

This algorithm is quite similar to the algorithm proposed by Palubeckis (1988).
Both construct the flow matrix in the same way – by choosing triplets defining
the triangles with one negative and two positive edges and modifying the entries
of W corresponding to these edges. To make the matrixW nonnegative, some
constant to its entries is added. In both cases the matrixD is defined by some set
of grid points, and the optimal value is computed according to the same formula.
The main difference between these algorithms lies in the triplet selection strategy.
In the old algorithm triplets(i, j ; k) ∈ θ ′ with the largest distanced(si, sj ) are
considered first. When some triplet, say(i′, j ′, k′), is selected, then all triplets in
the set{(i′, j ′; k) ∈ θ ′|k 6= k′} become inadmissible. In the algorithm GENERATE
these restrictions are removed, and any triplet inθ ′ satisfying the condition stated
in Step 2 (this condition is satisfied in the old algorithm as well) can be chosen.

PROPOSITION 1. For i ∈ N let li be the rank of the pointsi in the sequence
obtained in Step 3 of GENERATE. For a QAP defined by the pair(W,D) delivered
by GENERATE, the assignmentp = (l1, . . . , ln) is optimal, and the optimal value
is equal towmin6(D)/2.

Proof. Consider the flow matrixW(T (i, j, k, α)) corresponding to a triplet
(i, j ; k) selected in Step 2 of GENERATE. It is clear from the definition of the



138 G. PALUBECKIS

setθ ′ and Corollary to Theorem 1 that for this matrix and distance matrixD the
assignmentp is optimal with the valuef (p) = 0. The claim is established by
applying Lemma 1 recursively for the set oft triplets and observing that Step 4 of
the algorithm does not violate the optimality ofp. 2

In an implementation of the algorithm GENERATE some mechanisms for mak-
ing choice of the set of points in Step 1 and triplets in Step 2 should be specified.
We postpone this question until the next section.

Let I (n, nx, ny, t, w) denote the set of pairs (W,D) which can be obtained
using algorithm GENERATE. We will show that for a wide range of values of
nx, ny, t andw this set is hard. We use a restricted version of the following NP-
complete problem (Garey and Johnson, 1979).

3-Dimensional Matching (3DM)
Instance. Disjoint setsU1, U2, U3 with |U1| = |U2| = |U3| = m and a set of

tripletsZ ⊆ U1× U2× U3.
Question. Does there exist an exact matchingM ⊆ Z, i.e., |M| = m and each

element ofU = U1 ∪ U2 ∪ U3 occurs in exactly one triplet ofM?
This problem remains NP-complete even in the case when each element ofU

is included in at most three triplets ofZ (see Garey and Johnson, 1979; also Dyer
and Frieze, 1985) for a further restriction of 3DM). We use a slight embellishment
of this version of 3DM.

Letβ(u1) (respectively,β(u2) andβ(u3)) be the number of appearances ofu1 ∈
U1 (respectively,u2 ∈ U2 andu3 ∈ U3) in the triplets of the setZ.

PROPOSITION 2. 3DM with β(U1)=β(U2)=β(U3)=3 for eachu1 ∈ U1, u2 ∈
U2, u3 ∈ U3 is NP-complete.

Proof.We use a reduction from 3DM withβ(U) ∈ {2,3} for eachu ∈ U . The
case when for someu ∈ U β(U) = 1 can be excluded from consideration since the
triplet containing suchu always belongs to an exact matching (if any) and can be
removed fromZ (together with its elements fromU). Supposeβ(u1)=2 for some
u1 ∈ U1. Then necessarily existu2 ∈ U2 andu3 ∈ U3 such thatβ(u2) = β(u3)=2.
Assuming thatki /∈ U, i = 1,2,3, addk1 toU1, k2 toU2, k3 toU3, and (u1, k2, k3),
(k1, u2, k3), (k1, k2, u3), (k1, k2, k3) to Z. It is easy to see that for the new problem
the answer is ‘yes’ if and only if the answer ‘yes’ is for the initial one. This follows
from the observation that the triplet (k1, k2, k3)must belong to any exact matching
for the new problem. Note also that nowβ(u1)=β(u2)=β(u3)=3. Continuing this
way we obtain the problem with each element included in exactly three triplets.
With respect to the existence of an exact matching this problem is equivalent to the
initial one, and thus is NP-complete. 2

Now we state the main result of this section. LetCk = Ck(H 1
4 , . . . , H

k
4 ), k > 2,

denote the chain of graphsHi
4 = (V i, Ei), i = 1, . . . , k, each isomorphic toH4,

connected in such a way that|V i ∩ V i+1| = 2 for eachi = 1, . . . , k − 1, V i ∩
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Figure 3. ChainC5 = C5(H
1
4 , . . . , H

5
4 ).

V j = ∅ for each pairi, j = 1, . . . , k, |i − j | > 1, and the weight of the edge
ei ∈ Ei ∩ Ei+1 for eachi = 1, . . . , k − 1, is 2, i.e., is obtained by summing the
weights of this edge inHi

4 andHi+1
4 (it is required for this edge to be positive in

both graphs). An example of the chain is shown in Figure 3.
In the formulation below we do not strive to give tight lower bounds on the

dimensions of the gridnx, ny. Essentially, we only assert that QAP instances pro-
duced by GENERATE applied to a grid, whose dimensions are sufficiently large,
are NP-hard. In fact, the reduction used in the proof of the theorem given below
allows to decreaseny at the cost of increasingnx and vice versa. So, instead of
trying to characterize the smallestnx andny for which the reduction still holds it is
more reasonable to evaluate the minimal size of the grid, that is, the productnxny.
Later in this section we will give an asymptotic estimate of such kind.

THEOREM 2. For anynx > n/5, ny > n/9, t > 2n and positive integerw all
bounded from above by some polynomial ofn the setI (n, nx, ny, t, w) is hard.

Proof. We will use a reduction from 3DM with each element ofU included in
exactly three triplets. So, in our case|Z| = 3m (and certainlym > 2). We also
suppose that the setZ does not have duplicate triplets. To make a construction of
a QAP more lucid, we assume in the beginning thatb = n/(12m) is an integer.
We first select the setS of points on the grid. The rows of the grid correspond to
the elements ofU as described by the following mapping:ρ(u1i) = {2i − 1,2i},
ρ(u2i) = {2m+2i−1, 2m+2i}, ρ(U3i) = {4m+2i−1,4m+2i}, u1i ∈ U1, u2i ∈
U2, u3i ∈ U3, i = 1, . . . , m. The first 6m columns correspond to the triplets in
Z : µ(zi) = {2i − 1,2i}, zi ∈ Z, i = 1, . . . ,3m. For zl = (u1i , u2j , u3k) ∈ Z
defineS(zl) = µ(zl)×(ρ(u1i )∪ρ(u2j )∪ρ(u3k)). The setS can be divided into two
disjoint subsetsS1 andS2. The first subsetS1 = U3m

l=1S(zl). Figure 4 shows the setS
for m = 3 and Z= {(u11, u22, u33), (u11, u21, u31), (u11, u22, u32), (u12, u21, u33),
(u12, u23, u32), (u12, u23, u31), (u13, u22, u31), (u13, u21, u32), (u13, u23, u33)}. The
subsetS1 consists of points in the columns 1 through 18. To define the second
subset, we distinguish between the following two cases.

Case 1.m 6 (b − 2)/3. We append the grid obtained so far with the setX =
{6m + 1, . . . ,6m + 2(b − 3)} of additional 2(b − 3) columns. In this case,S2 =
{1, . . . ,6m} ×X.
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Figure 4. An example of the point setS used in the reduction.

Case 2.m > (b−2)/3. It is assumed thatn is such thatb > 5, i.e.,n > 60m. We
append the grid with 2q = 2d3m(b − 3)/(b − 2)e new columns divided into pairs
π1, . . . , πq using the mappingτ(i) = πi = {6m+2i−1,6m+2i}, i = 1, . . . , q.
To eachu ∈ U we assign an (b − 3)-element subset5(u) of {π1, . . . , πq}. We
require this assignment to be such that for anyi ∈ {1, . . . , q} the cardinality of
the setλi = {u ∈ U |πi ∈ 5(u)} is at mostb − 2. Letη(u), u ∈ U , be the union
of columns in all pairsπi ∈ 5(u). DefineS2(u) = ρ(u) × η(u). Then the subset
S2 = ∪u∈US2(u). In Figure 4 the subsetS2 consists of points in the columns 19
through 30.

In both cases it is easy to verify that|S| = |S1| + |S2| = n. To finish the
construction, we usen-vertex graphG consisting ofm copies of the chainC5 and
3m copies of the chainC2B−3. Each pair of chains inG is vertex disjoint. The
weights of the edges ofG belong to the set{−1,1,2}. We take the matrixW =
W(G) as a flow matrix of an instance of QAP in our reduction.

We argue that a given instance of 3DM has an exact matching if and only if
f0(W(G), D(S))=0. Suppose that for some assignmentp f (p) = 0. It follows
from the construction ofG, definition ofCk and Lemma 2 thatf0(W(G),D(S)) >
0 and, therefore, such an assignment is optimal. SinceG is a collection of chains
we can write

f (p) =
m∑
i=1

f (5, i)+
3m∑
i=1

f (2b − 3, i), (5)

wheref (5, i) (respectively,f (2b− 3, i)) is a term off (p) defined by the weights
of the ith copy ofC5 (respectively,C2b−3). Clearly, we must havef (5, i) = 0 for
eachi = 1, . . . , m andf (2b − 3, i) = 0 for eachi = 1, . . . ,3m. We can apply
Theorem 1 to each graphHi

4, i ∈ {1, . . . , k}, in Ck = Ck(H 1
4 , . . . , H

k
4 ), k = 5 or

2b−3. SinceHi
4 andHi+1

4 for eachi = 1, . . . , k−1 have two vertices in common,
we can see thatf (k, i) = 0, k = 5 or 2b−3, if and only if the set of points{sp(v)|v
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Figure 5. Decomposition ofH4 with double weights.

is a vertex of theith copy ofCk} is defined by the intersection either of 2 grid
columns andk+1 grid rows or 2 grid rows andk+1 grid columns. The latter is
the only possible case for the copies ofC2b−3. This claim is established using the
following facts. Ifm 6 (b−2)/3, the number of grid rows 6m < 2b−2 and is too
small to embedC2b−3 vertically. Ifm > (b− 2)/3, then 2|λi| 6 2(b− 2) < 2b− 2
and, as assumed,b > 5, so the number of points on the vertical lines again is
insufficient. After embedding 3m copies ofC2b−3, exactly two points ofS in each
grid row remain to be free. This means that the vertices of a copy ofC5 must be
assigned byp to the points in the setS(zi) for somezi ∈ Z. The collection of
such sets used form copies ofC5 spans all the rows of the grid. Consequently, the
set of tripletsM = {zi ∈ Z|S(zi) is used to embed some copy ofC5} is an exact
matching for a given instance of 3DM.

The proof of the claim in the direction from the existence of exact matching to
zero value off0 is straightforward.

For the moment, we will digress from the main stream of the proof in order to
outline the changes in the reduction for the case whenn is an arbitrary sufficiently
large positive integer. Ifn is not divisible by 12m, we useb = bb′/4c, b′ =
bn/(3m)c, instead ofb defined earlier. In this case we also define the remainder
r = n− 3mb′ + 3mσ , whereσ ∈ {0,1}, andσ = 1 if and only ifb′ ≡ 1 or 3(mod
4). Clearlyr < 6m.

If b′ ≡ 0 or 1(mod 4), we simply append the grid with additional column
containingr points ofS and addr isolated vertices to the graphG constructed
in the same way as before.

So, letb′ ≡ 2 or 3(mod 4). To specify the analogues of Cases 1 and 2 considered
above, we can use the less restrictive conditionm 6 (b− 1)/3. Letqadd denote the
number of grid columns added to describeS2. In the first case,qadd=2(b − 3)+l,
wherel=1 if r = 0, andl=2 otherwise. In the second case, under the condition that
b > 4 and thusb′ > 18, n> 3mb′ > 54m, we takeqadd= 2d3m(b−3)/(b−1)e+
1+ dr/(2(b − 1))e. One of the new columns contains 6m points ofS2 while the
rest at most 2(b − 1) points each. In both cases, the graphG consists ofm copies
of C5,3m copies ofC2b−2 andr isolated vertices.

It can be readily checked that the above claim concerning the reduction from
3DM to QAP remains valid for the modified construction as well.

We end the proof by changing the obtained instance of the QAP slightly and
showing that fornx, ny, t andw specified in the formulation of the theorem this
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instance belongs to the setI (n, nx, ny, t, w). First we multiply the weight of each
edge ofG by two. Initially, G is a union of some number of copies ofH4 and,
possibly,r isolated vertices (ifr defined above is positive). After modification,
each copy ofH4 changes into a graph that can be decomposed into 4 copies of
H3 (see Figure 5). The total number of such copiest ′ = 24bm− hm, whereh=4
if b′ ≡ 2 or 3(mod 4) andh = 16 otherwise. Sinceb 6 n/(12m) it follows that
t ′ < 2n. To reacht specified in the theorem, we can duplicate arbitrary copies of
H3 from those appearing in the decomposition ofG (or even use some new copies,
for example, consisting of three vertices all belonging to the same chain inG).
For each copy ofH3 in the collection obtained we apply the following procedure:
take some integer from the interval [1,w] and multiply by it the edge-weights of
the copy. The matrixW(G) = (wij ) corresponding to the modified graphG is
obtained by summingW(H3) over all copies ofH3 processed by this procedure.
To makeW(G) nonnegative, we addwmin := −min{wij |i, j ∈ N, i < j} to each
entry of the upper half ofW(G) above the main diagonal.

Now it remains to show that the dimensions of the grid used in the reduction
do not exceednx andny specified in the theorem. Let these dimensions be denoted
by n′x andn′y. Since each grid row contains at least 9 points ofS (exactly 9 if
b′ = n/(3m) = 18) it follows thatn′y 6 n/9. An upper bound onn′x can be
established by observing that at leastn′x − 3 grid columns contain at least 6 points
of S each. Thusn′x < n/5 for sufficiently largen. So, n′x < nx andn′y 6 ny. To get
a grid of sizenx×ny , we expand the grid obtained by addingnx−n′x new columns
andny − n′y new rows (these new columns and rows can even be inserted into the
grid by shifting some of the existing columns to the right and rows upwards).

It is easy to see that the modified construction is still working in the proof of the
reduction, and now a given instance of 3DM has an exact matching if and only if
f0(W(G),D(S)) = wmin6(D). Moreover, in the case when the answer for 3DM
is positive, the instance of the QAP constructed usingS and modified graphG
belongs to the setI (n, nx, ny, t, w). Note that Step 3 of the algorithm GENERATE
can be ignored when deciding whether an instance of the QAP is a member of
the setI . This step only describes a possible way in which the distance matrix
D from the setS is obtained. Since the reduction is polynomial in time the set
I (n, nx, ny, t, w) is hard. The proof is complete. 2
REMARK 2. In the reduction considered above the number of pointsn > 108.
This follows from the restrictionsm > 2 and n> 54m.

REMARK 3. In Step 2 of GENERATE, a condition concerning three entries ofW

defined by a triplet (i, j ; k) is checked. This allows to avoid selecting two triplets
with corresponding triangles having common edge the weight of which is positive
in one of the triangles and negative in another. Releasing this condition leads to
a modification of GENERATE for which the set of possible instances includesI

and, therefore, is hard too.
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Next, we state a theorem concerning asymptotic behaviour of the reduction. We
assume that parameterst andw used to define the setI are bounded in the same
way as in Theorem 2.

THEOREM 3. Let ε be any positive number. Then for sufficiently largen there
exists a grid of size less than(1+ ε)n for which the setI is hard.

Proof. Let ε be fixed and letm denote the cardinality of the setsU1, U2, U3 in
3DM as before. We can assume without loss of generality thatε is less than 1.
Relaten to m by fixing n = d36m2/εe and assume thatm is sufficiently large to
guarantee that
√
n > 8

√
ε/(1− ε). (6)

We first show thatm satisfies the condition for Case 1 in the proof of Theorem
2 to hold, that is,m 6 (b − 2)/3. Sinceb > b′/4 − 1 > n/(12m)− 2 and
(b − 2)/3 > n/(36m)− 4/3 it is sufficient to ascertain thatm 6 n/(36m)− 4/3.
Simplifying this inequality we obtain 36m2+48m6 n. By the choice ofn and (6)
we can write 36m2 + 48m 6 εn + 8

√
εn 6 n. Thus, the condition for Case 1 to

hold is established.
Given an instance of 3DM, the corresponding instance of the QAP is con-

structed using the same reduction as in the previous proof. Since the number of
additional columnsqadd 6 2(b − 3) + 2 < 2b 6 n/(6m), the size of the grid
obtained is less than 6m(6m+ n/(6m)) 6 εn+ n = (1+ ε)n. The assertion about
hardness of the setI defined with respect to this grid follows from the proof of
Theorem 2. 2

Besides a standard algorithm which can produce each member ofI with nonzero
probability, we also investigate three other generators each characterized by a set
of QAP instances which can be compared to the setI . Two such sets are subsets
of I and one is a superset ofI . The description of these generators is provided
in the next section. We also consider a generator which additionally to triangles
selects also both some number of copies ofH5 and some number of copies ofH7.
The choice ofH5 andH7 and notH4 or H6 is motivated by a wish to obtain the
matrixW (at the beginning of Step 4 of GENERATE) with a smaller value of the
ratioR(W) = (sum of positive entries ofW )/(−1)(sum of negative entries ofW ).
We can expect that an instance of the QAP with zero optimal value and matrixW

having a relatively small sum of positive entries may be harder for QAP heuristics
than an instance with the positivity of the matrixW more pronounced.

For a graphG we define the ratioR(G) = (total weight of positive edges of
G)/(−1)(total weight of negative edges ofG). Clearly,R(Hi) = i/(i − 2) if i is
even, andR(Hi) = (i + 1)/(i − 1) if i is odd. Particularly,R(H4) = 2, R(H5) =
R(H6) = 3/2 andR(H7) = R(H8) = 4/3. So, usingH5 andH7 leads toW with
the same value ofR(W) as using the same number ofH6 andH8. Naturally, we
prefer graphsH5 andH7 since they are smaller and easier to process. We should
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note that generators using graphsHi with more than 7 vertices could be construc-
ted. So, an algorithm described below can be considered simply as an illustration
of our approach.

In fact, this algorithm is a generalization of GENERATE obtained by inserting
two new steps after the initialization step: one for processingh7 copies ofH7 and
anotherh5 copies ofH5. The input to the algorithm is that to GENERATE enlarged
with the numbersh7 andh5. LettingHi(α), i = 5 or 7, denote the graphHi with
weight of each edge multiplied byα, the algorithm can be stated as follows.

Algorithm GENERATE_USING_LARGER_GRAPHS
1. Choosen points s1, . . . , sn on the gridQ(nx, ny). SetW equal to the all-

zeros matrix.
2. Repeath7 times the following operations:

2.1. Choose a subsetS7 ⊂ {s1, . . . , sn} consisting of 7 points and an
assignmentp : i ∈ V → k, sk ∈ S7, of the vertices ofH7 =
(V ,E = E+ ∪E−) to points inS7 such that

(1) f (p) = 0,
(2) wp(i)p(j) > 0 (if p(i) < p(j)) or wp(j)p(i) > 0 (if p(i) >

p(j)) for each(i, j) ∈ E+, and
wp(i)p(j) 6 0 (if p(i) < p(j)) or wp(j)p(i) 6 0 (if p(i) >
p(j)) for each(i, j) ∈ E−,

allowing possible repetition with some choice (or choices) made
earlier while executing this step.

2.2. Choose an integerα ∈ [1, w].
2.3. Rename the vertices ofH7 = (V ,E) according top. SetW :=

W +W(H7(α)), whereH7(α) corresponds toH7 just obtained.
3. Repeath5 times the analogous operations as in Step 2 with respect to the

graphH5.
4. Perform Steps 2–4 of the algorithm GENERATE.
Note that the existence of an assignmentp with f (p) = 0 can be checked and

such an assignment can be obtained using the algorithm BALANCE described in
the previous section. This operation and especially checking signs of the entries of
W corresponding to the edge set ofH7 orH5 may significantly restrict the choice
of a subsetS7 in Step 2.1 and subsetS5 in Step 3 of the above algorithm.

Let I ′(n, nx, ny, h7, h5, t, w) denote the set of pairs(W,D) which can be pro-
duced by GENERATE_USING_LARGER_GRAPHS. As it follows from the next
observation this set is not comparable withI .

REMARK 4. If at least one ofh7 andh5 is positive, then for anyn, nx, ny,w, t
andt ′I ′(n, nx, ny, h7, h5, t

′, w) ∩ I (n, nx, ny, t, w) = ∅. To establish this simple
fact, it is sufficient to compare the values ofR for both algorithms. Thus, before
addingwmin to W in GENERATER(W)=2, while at the same point in GENER-
ATE_USING_LARGER_GRAPHSR(W) < 2.

The next result is essentially a reformulation of Theorem 2 for the setI ′.
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THEOREM 4. For anynx > n/5, ny > n/9, t > 2n, nonnegative integersh7, h5

and positive integerw all bounded from above by some polynomial ofn the set
I ′(n, nx, ny, h7, h5, t, w) is hard.

Proof. We need only to notice that matricesW(H7(α)) andW(H5(α)), α>0,
exist which can be added toW without destroying the reduction used to prove
Theorem 2. For example, such a matrix is defined by a graphHi , i=5 or 7, whose
vertices are properly chosen from the vertex set of some copy of the chainCj ,
j=5 or 2b − 3 or 2b − 2. ‘Chosen properly’ means that the restriction of any
assignment with zero value for the copy ofCj (see (5) and arguments below) to the
vertices ofHi has zero value as well, and, moreover, the edge weights ofHi are in
conformance with those of the copy similarly as in the second condition stated in
Step 2.1 of GENERATE_USING_LARGER_GRAPHS. 2

Note that we can release the second condition in Step 2.1 and its analogues for
H5 andH3. This does not refute the fact of hardness of the set of possible instances.
However, the absence of this condition leads to a matrixW with a larger value of
R, what is not desirable.

We end this section with a discussion relating our results with those obtained by
Cyganski, Vaz and Virball (1994). They provide a generalization (called a gener-
alized Palubeckis algorithm) of the QAP generator presented in Palubeckis(1988).
The algorithm GENERATE described in this paper, in fact, fits into the schema
of this generalization. Cyganski, Vaz and Virball(1994) also give a special linear
program and prove that this program can be used to compute the optimal solution
value for a QAP instance produced by the generalized Palubeckis algorithm. We
reformulate their main result using our definitions and notations.

Let 2 = {21, . . . ,2r}, r =
(
n

2

)
(n − 2), be the set of triplets defined with

respect toN as before, andW = (wij ) be the matrix produced by the algorithm
GENERATE. To each triplet2l = (i, j ; k), l ∈ {1, . . . , r}, we associate a variable
αl and define2+l = {(i, k), (j, k)},2−l = {(i, j)}. Then the linear program given
by Cyganski, Vaz and Virball (1994) can be written

w0 = maxw,

w +
∑

l,(i,j)∈2−l
αl −

∑
l(i,j)∈2+l

αl = wij , i = 1, . . . , n− 1, j = i + 1, . . . , n,

(7)

αl > 0, l = 1, . . . , r.

The following statement is a specialization of the theorem proved by Cyganski,
Vaz and Virball (1994).

THEOREM 5. If W = (wij ) and D are matrices produced by the algorithm
GENERATE, then for the corresponding QAP the optimal valuef0(W,D) is equal
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to

w06(D)/2,

wherew0 is the optimal value of the linear program (7). Generally, if the pair of
matricesW andD defines an instance of the Euclidean QAP, thenw06(D)/2 6
f0(W,D).

Clearly, ifW andD are obtained using algorithm GENERATE, thenw0 equals
wmin defined in Step 4 of this algorithm.

In fact, this theorem says that the optimum value of each QAP instance delivered
by GENERATE can be computed in polynomial time. Nevertheless, as shown in
this section, the set of instances which can be obtained using GENERATE is hard,
and no polynomial-time algorithm for the QAP exists, unless P=NP, which can
solve each QAP instance in this set. Note that the linear program (7) cannot be
used to devise such an algorithm. The job could be done by a linear program for
which an analogue of Theorem 5 withw06(D)/2 > f0(W,D) substituted for
w06(D)/2 6 f0(W,D) holds. However, the results in this section imply that no
such program exists, unless P=NP.

4. Generators

We begin a description of generators with a procedure for which the set of pos-
sible instances is a superset ofI . Then we describe three implementations of the
algorithm GENERATE, which can be ordered according to the strict inclusion
relation defined on the corresponding sets of instances that can be produced by
these implementations. Finally, we provide some details of a program realizing the
algorithm GENERATE_USING_LARGER_GRAPHS.

The input to our first algorithm includes parametersnx, ny, t andw defined in
the previous section and one additional parameter – an upper boundγbound on the
number of trials in triplet selection. The algorithm can be stated as follows.

Algorithm GEN1
1. Form a listL = (s1, . . . , sn′), n′ = nxny, of grid points by scanning the

rows of the gridQ(nx, ny) sequentially. SetW equal to the all-zeros matrix.
2. Repeatt times the following operations:

2.1 Setγ := 0.
2.2 Randomly select a pair(i, j) ∈ {(k, l)|k, l ∈ N ′, k < l,wkl 6 0},

whereN ′ = {1, . . . , n′}.
2.3 Form a setN ′(i, j) = {l ∈ N ′\{i, j}|d(si, sl)+d(sj , sl) = d(si, sj ),

wil, wli,wjl,wlj are nonnegative}. IfN ′(i, j) is nonempty, proceed
to 2.4. Otherwise setγ :=γ +1, and ifγ<γbound return to 2.2; else
stop with a failure.

2.4 Randomly selectk ∈ N ′(i, j) and an integerα ∈ [1, w]. SetW :=
W +W(T (i, j, k, α)).
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3. Eliminate zero rows and columns fromW and corresponding points from
L, assuming that the correspondence is given by the mapping (ith row and
column ofW )→ si , i ∈ N ′. LetL′ = (s′1, s′2, . . . , s′n), n 6 n′, be the list of
points upon termination of this procedure.

4. Addwmin := −min{wij |i, j = 1, . . . , n, i < j} to each entry ofW above
the main diagonal.

5. Generate random permutation (assignment of objects to points inL′) p =
(p(1), . . . , p(n)).

6. Permute rows and columns ofW according top, i.e., for each pairi, j,1 6
i < j 6 n, takewij = wp(i)p(j) if p(i) < p(j) orwij = wp(j)p(i) otherwise.

7. Construct the distance matrixD(L′) by taking dij ,1 6 i, j 6 n, i 6=
j , equal to rectilinear distance between pointss′i , s

′
j ∈ L′. Stop with the

matricesW andD = D(L′) defining a QAP instance, permutationp op-
timal for this instance and the optimal valuef0(W,D) =∑ij wij dp(i)p(j) =
wmin6(D)/2.

The algorithm either produces an instance or reports about a failure. The latter,
however, is possible only for larget and very smallγbound.

It can be easily seen that the first two steps of the above algorithm are reincarna-
tion of the first two steps of GENERATE. As compared to GENERATE, only Step
3 is essentially new. In fact, the action of Step 3 corresponds to removing isolated
vertices fromG(W).

Let I1(nx, ny, t, w) denote the set of instances which can be obtained using
GEN1 (when GEN1 is terminating properly, i.e., with an instance of the QAP).
Clearly, I1(nx, ny, t, w) ⊃ I (n, nx, ny, t, w) for positive t and anyn > 4. Note
that when an instance inI1 belongs also toI , permutationp delivered by GEN1 is
the same as permutationp defined in Proposition 1. However, whent is sufficiently
large andn<nxny , the probability of producing by GEN1 an instance, which be-
longs to the setI , is extremely small. In practice, the size of QAP instances created
by GEN1 is equal tonxny . The next algorithm is a variation of GENERATE.

Algorithm GEN2.
1. Compute grid dimensionsnx, ny applying the same formulas as in the re-

duction used to prove Theorem 2.
2. Choose randomlyn pointss1, . . . , sn on the gridQ(nx, ny). SetW equal to

the all-zeros matrix.
3. Apply Step 2 of GEN1 withn′ replaced byn.
4. Apply Steps 3 and 4 of GENERATE.
The values ofnx andny can be included into the input to GEN2, and so Step

1 of this algorithm can be dropped. In fact, this modification of GEN2 is an exact
implementation of GENERATE. In the next section we refer to this modification
as GEN2M. In both cases, for GEN2 and for its modification, the set of instances
which can appear in an output is equal toI (n, nx, ny, t, w). Before closing the
description of GEN2, we should note that the random choice of points in Step
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2 and sorting in Step 4 of GEN2 (or, more precisely, in Step 3 of GENERATE)
replace Steps 5 and 6 of GEN1.

The following algorithm is another modification of GENERATE. It includes the
first step (selection of grid points) of the reduction considered in Section 3. In other
words, the distance matrix generated by this algorithm is of the same type as the
matrixD(S) defined there. In the description below,m denotes the size of sets in
3DM as before. It is assumed thatm >2. Also,m is bounded from above byn/54
for certain values ofn or byn/60 (see previous section for details).

Algorithm GEN3
1. Generate randomly 3mtriplets describing an instance of 3DM with each

element ofU appearing exactly 3 times.
2. Form a listL = (s1, . . . , sn) of grid points belonging to the setS defined in

the proof of Theorem 2. SetW equal to the all-zeros matrix.
3. Apply Step 2 of GEN1 withn′ replaced byn.
4. Apply Steps 4, 5, 6 and 7 of GEN1 withL′ replaced byL.

Let I3(n,m, nx, ny, t, w) denote the set of instances produced by this algorithm.
Since the choice of the first subset ofS is determined by the set of triplets and
the second subset ofS is formed deterministically, for any feasible value ofm
I3(n,m, nx, ny, t, w) is only a subset ofI (n, nx, ny, t, w). Nevertheless, the set
I3(n,m, nx, ny, t, w) includes instances obtained using the reduction from 3DM to
QAP and thus is hard, too.

The algorithm GEN3 was extended to fully implement the reduction described
in the proof of Theorem 2. In this extension, named GEN4, some of the triangles
are chosen deterministically (the numbert ′ of such is specified in the proof) and
the rest are chosen randomly.

Algorithm GEN4
1. Apply Steps 1 and 2 of GEN3.
2. For each oft ′ copies ofH3 specified in the reduction perform the following:

randomly select an integerα ∈ [1, w] and setW := W +W(T (i, j, k, α)),
wherei, j, k are the vertices of the copy.

3. Sett :=t − t ′. If t > 0, apply Step 2 of GEN1 withn′ replaced byn.
4. Apply Step 4 of GEN3.

Let I4(n,m, nx, ny, t, w), t > t ′, be the set of instances produced by GEN4. The
following two properties are clear:I4(n,m, nx, ny, t, w) ⊂ I3(n,m, nx, ny, t, w),
and the setI4(n,m, nx, ny, t, w), t > t ′, is hard.

We also have implemented a variation of the algorithm GENERATE_USING_
LARGER_GRAPHS described in Section 3. This variation, named GEN5, is ob-
tained by replacing Steps 1 and 4 of GENERATE_USING_LARGER_GRAPHS
with Step 2 and, respectively, Steps 3 and 4 of GEN2. In Step 2.1, a subsetS7 is
chosen randomly. For this subset, an assignmentp satisfying the conditions stated
in Step 2.1 is searched. If search fails, a new subsetS7 is selected. The number
of failures is bounded from above by some parameterχ7 whose value is included
into the input to GEN5. If this bound is reached, GEN5 stops with no instance
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generated. In this case,h7 should be decreased or(and)χ7 increased. The same
strategy is used to implement Step 3. The hardness of the set of instances which
can be produced by GEN5 is established by Theorem 4.

In our experiments we also tried the algorithm proposed by Palubeckis (1988).
The description of this algorithm can also be found in Li and Pardalos (1992) and
Pardalos, Rendl and Wolkowicz (1994). In the current paper we call this algorithm
GEN0. As already remarked in the preceding section, GEN0 is similar to the al-
gorithm GENERATE described there. In fact, GEN0 forms the matrixW in the
same way as GEN1-GEN3 – by applying operations of the same kind as those
specified in Steps 2.2-2.4 of GEN1. In GEN0, however, the rules for choosing
triplets used to modifyW are slightly different (see, for example, Pardalos, Rendl
and Wolkowicz (1994) for details).

The last algorithm we tried is the second generator proposed by Li and Pardalos
(1992) (and named in their paper as GEN2). The reasons of choosing their second
and not the first generator are the following: this generator is less similar to GEN0
than the first one which like GEN0 and also generators suggested in this paper is
using triangles in the flow matrix construction, and, most importantly, the results of
experimentation presented in Li and Pardalos (1992) show that the second gener-
ator produces slightly harder QAP instances than the first one. In our experiments
we use a specialization of the second generator by Li and Pardalos(1992) for the
rectilinear QAP. Their algorithm is adjusted to generate QAP instances in which the
matrixD is composed of the shortest rectilinear distances between pairs of points
on the grid. This algorithm, denoted GENLP, is of different type than generators
based on the triangle selection.

For instances produced by the second generator by Li and Pardalos (1992)
the Gilmore-Lawler bound (Gilmore, 1962; Lawler, 1963) is equal to the optimal
value of the objective function. Li, Pardalos, Ramakrishnan and Resende (1994,
Corollary 3.1) prove that there is no polynomial-time algorithm to find an optimal
permutation for a QAP instance with this property, unless P=NP. However, the
answer to the question whether the set of instances which can be generated by
GENLP is hard or not is not known. We only expect that this set is hard.

5. Experimental results

The goal of experimentation was to compare, using some heuristic for the QAP,
the hardness of QAP instances produced by different generators. As an examiner,
the multi-start descent technique was chosen. This algorithm consists of two steps
executed intermittently: randomly generating a starting solution, and applying the
descent procedure which improves a given solution by performing the pairwise
interchanges of objects and stops when no interchange leads to a solution with
smaller value of the objective function. The simplest stopping criterion for multi-
start descent is the upper bound on the number of repetitions of these two steps.
Being simple and easily implementable, the multi-start descent heuristic yields
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solutions of sufficiently high quality, not much worse than those obtained using
more sophisticated methods (Taillard, 1995). If good solutions are needed in a short
amount of time, Taillard (1995, beginning of Section 5) recommends to use either
methods based on the tabu search, robust (Taillard,1991) or reactive (Battiti and
Tecchiolli,1994), or simply multi-start descent procedure.

For evaluation of the quality of solutions, we had to decide which measure to
use: the traditional one

K ′(fheu) = 100(fheu− f0)/f0,

wherefheu is a heuristic solution value, or that with the reference to an average
value off

K(fheu) = 100(fheu− f0)/(fave− f0),

wherefave = (
∑n−1

i=1

∑n
j=i+1 wij )(

∑n−1
i=1

∑n
j=i+1 dij )/

(
n

2

)
is the average value of

f taken over the set of all permutations. Despite of the fact that the first measure
is widely used in combinatorial optimization, we preferred the second one. The
reason behind this choice is a sensitivity ofK ′(fheu) to constant transformations
of any of the matricesW andD. In other words, the valueK ′(fheu) for QAP with
each nondiagonal entry ofD (or each entry of the upper half ofW above the main
diagonal) enlarged by a nonzero constant is different from the valueK ′(fheu) for
the initial QAP. It is clear that in both cases the positions of solutions in their
ordering according to the values off are the same. Given a QAP instance (W,D)

and a heuristic solution, one can add a sufficiently large positive constant to, say,
matrixW and obtain an equivalent QAP for which the value ofK ′ on the same
solution is sufficiently close to zero. Thus, different estimates for QAPs with the
same structure can be obtained. Obviously, the measureK( fheu) is free from this
drawback.

The multi-start descent algorithm and all generators described in this paper have
been coded in the C language, and the experiments were done on an IBM PC-
486/80.

To obtain the results presented in this section, we run generators with the input
values given in Table 1. The rows of this table are partitioned into two clusters: the
first containing rows 1 through 8 and the second consisting of the remaining 10
rows. The data in the first cluster were used by all generators, whereas the data in
the second only by GEN0, GEN1, GEN2M, GEN5 and GENLP. The first column
of this table shows the dimension of the problem. The second and third give the
number of triangles (selected to modify the matrixW) for GEN5 and for the rest
of generators except GENLP, respectively. In Sections 3 and 4 this characteristic
is denoted byt . Next two columns contain the values used (also to modifyW)

only by GEN5: the number of graphs isomorphic toH5 and, respectively, toH7.
The rule according to whichtGEN5, h5 andh7 are calculated is very simple. We fix
the numberr=3trest of edges intrest triangles and use 0.5r, 0.3r and 0.2redges to
define the number of triangles, copies ofH5 and copies ofH7, respectively. Letgi ,
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Table 1. Input to generators

n tGEN5 trest h5 h7 Set size Grid dimensions

(case of GEN0, GEN1;

case of GEN2–GEN5, GEN2M, GENLP)

108 1501 3000 269 86 2 12× 9; 17× 12

120 1750 3500 315 100 2 12× 10; 20× 12

132 2250 4500 404 129 2 12× 11; 19× 12

144 2751 5500 495 157 2 12× 12; 22× 12

162 3251 6500 584 186 3 18× 9; 25× 18

180 4249 8500 765 243 3 15× 12; 30× 18

198 5001 10000 899 286 3 18× 11; 29× 18

216 5999 12000 1080 343 4 18× 12; 33× 24

30 101 200 17 6 6× 5; 8× 8

40 173 350 32 10 8× 5; 9× 9

50 301 600 54 17 10× 5; 10× 10

60 451 900 80 26 10× 6; 11× 11

70 599 1200 109 34 10× 7; 12× 12

80 801 1600 143 46 10× 8; 13× 13

90 1001 2000 180 57 10× 9; 14× 14

100 1250 2500 226 71 10× 10; 15× 15

120 1750 3500 315 100 12× 10; 16× 16

150 2751 5500 495 157 15× 10; 18× 18

i > 3, denote the number of edges ofHi. Clearly, gi=i(i-1)/2, i >3. Since each of
tGEN5, h5 andh7 must be an integer, we taketGEN5 to be very close but not neces-
sarily equal to 0.5r/g3 = r/6, h5 to 0.3r/g5 = 0.03r andh7 to 0.2r/g7 = r/105.
For eachn these choices are such that the inequality |r-(3tGEN5+10h5+21h7)| 6 1
is satisfied. This strategy guarantees that for GEN5 the number of modifications of
the entries ofW is almost the same as for generators based on the triangles only.
The column under heading ‘set size’ gives the size of sets in 3-dimensional match-
ing. This characteristic is used by GEN2–GEN4. The last column shows the grid
dimensions which for GEN0 and GEN1 (the first member of the pair) are different
from those for GEN2–GEN5, GEN2M, GENLP (the second member of the pair).
In the case of GEN2–GEN4 the grid dimensions do not belong to the input but are
computed at the beginning of generation procedure. For the first 8 values ofn these
computed dimensions were used by GEN5, GEN2M and GENLP. Remember that
the reduction from 3DM to QAP can be simulated and, therefore, each of GEN2–
GEN4 applied only ifn >108 (see Remark 2, Section 3). For the rest values ofn

GEN2M, GEN5 and GENLP were run with square grids containing 2n or slightly
more points. For GEN1, in all cases the number of grid points appeared to be equal
to the number of objects. Some parameters are not presented in the table. The value
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Table 2. Comparison of generators using multi-start descent (for each generator,
minimal values ofK over 10 starts in the first row, and averages in the second row)

Problem size

Generator 108 120 132 144 162 180 198 216

GEN0 3.5 0.1 1.4 2.1 1.2 2.1 1.7 1.8
9.0 9.1 7.0 6.8 8.4 7.9 7.3 6.5

GENLP 3.9 2.2 1.6 2.8 0.9 2.0 1.9 4.3
8.7 5.6 4.5 7.2 8.8 6.6 6.9 10.2

GEN1 5.5 5.4 4.9 4.9 5.6 4.1 3.9 2.7
12.1 8.9 12.2 9.4 10.4 7.6 7.1 8.3

GEN2 6.3 6.7 5.8 5.4 5.4 5.5 5.2 6.7
8.2 10.7 11.5 10.1 10.9 10.5 9.3 10.9

GEN3 8.3 4.6 4.7 7.1 7.3 6.1 4.0 6.4
12.5 10.9 11.0 9.6 10.4 11.8 8.9 12.1

GEN4 7.6 8.9 7.1 6.4 8.5 5.7 5.7 5.5
13.0 12.7 11.0 11.0 13.5 10.2 10.9 10.1

GEN5 8.0 7.2 5.1 6.0 4.4 6.1 3.7 2.3
12.3 11.1 13.7 12.4 11.4 12.0 11.4 11.6

Table 3. Number of instances solved optimally (25 instances tried
for each entry of the table)

Problem size; number of starts of descent

Generator 30; 1000 40; 500 50; 200 60; 100 70; 50

GEN0 25 25 20 22 21

GENLP 25 25 17 14 3

GEN1 23 18 15 10 1

GEN2M 24 19 15 2 2

GEN5 8 8 9 3 1

of w in all the experiments was set to 10. In GEN0, the same value was used as
a constant assigned to entries ofW . The values of the other parameters were the
following: γbound= 5,1A = 100 for GENLP (1A is defined in Li and Pardalos
(1992)),χ7 = χ5 = 10n for GEN5 (χ5 is the bound on the number of failures in
choosing a copy ofH5 and is similar toχ7 defined in Section 4).

The main results of experiments are summarized in Tables 2–5. To obtain Table
2, the first data cluster in Table 1 was used. For eachn available one QAP instance
was created by each generator. To solve an instance, the descent procedure was
applied to 10 random starting solutions. Sufficiently large computing times did not
allow increasing the number of starts. For example, forn=198 10-start descent
took more than 2 hours on an IBM PC-486/80 for GEN0–GEN5 and more than 1.5
hours for GENLP. As it can be seen from the table, the best value ofK for both
GEN0 and GENLP is significantly smaller than for the other generators. Among
these GEN4 can be distinguished for which this value is largest in a half of cases.
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Table 4. The quality of solutions obtained in 1.5–2.5 hours of com-
puter time (minimal values ofK in the first row, and averages in the
second row)

Problem size; number of starts of descent

Generator 80; 270 90; 170 100; 120 120; 60 150; 30

GEN0 0.3 0.3 0.2 0.1 0.5
8.7 9.8 8.4 8.7 8.3

GENLP 1.9 1.4 1.4 0.7 4.0
10.7 9.6 10.2 8.5 9.3

GEN1 2.0 1.7 3.3 4.5 5.3
12.2 11.6 11.0 10.4 9.2

GEN2M 0 2.1 5.7 2.6 5.8
13.5∗ 12.6 11.5 10.2 11.1

GEN5 0.5 1.8 5.4 4.2 6.0
16.5 14.9 14.8 12.5 13.2

∗The average for 144 starts (after reaching an optimal solution).

Table 5. Computational results for problems produced by GEN4 tuned to simulate
the reduction from 3DM to QAP (10 starts of descent for eachn)

n t Kmin Kave

108 184 6.8 7.5

120 208 6.6 7.3

132 232 7.1 7.8

144 256 6.5 7.4

162 276 6.2 6.8

180 312 5.3 5.9

198 348 4.5 6.3

216 368 4.4 5.4

Table 3 contains the results of the most interesting, in our opinion, experiment.
Multi-start descent was applied to smaller size QAP instances produced by five
generators. GEN3 and GEN4 were not run since they are working only forn >108.
GEN2 was represented by its modification GEN2M. The table shows how many
instances (out of 25) were solved to optimality in each case defined by the pair
(generator; problem sizen). The number of starts of descent was limited by com-
puting time resources. Under the given values of the number of starts the worst-case
time of solving one instance is about 10 min on our computer forn = 30 and about
15 min for the restn. Here and below, the term ‘worst-case’ is used to characterize
situation when multi-start descent fails to reach an optimum. As it follows from
Table 3, the hardest QAP instances (for multi-start descent, of course) are generated
by GEN5. Even problems of sizen=30 are not easily solvable. The results for
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GEN2M and GEN1 are quite similar except the case ofn=60. As expected, the
easiest QAP instances are produced by GEN0.

The results for largern are displayed in Table 4. The data were taken from the
second cluster in Table 1. The number of starts of descent was selected to keep
the worst-case solution time between 2 and 2.5 hours on an IBM PC-486/80 for
each of GEN0, GEN1, GEN2M and GEN5. For GENLP this time was smaller,
about 1.5 hours. In this table, the sums of the minimal values ofK for GEN1,
GEN2M and GEN5 are similar. GEN0 is again in the last position. Particularly, the
results in Tables 2–4 confirm the assertion made by Li and Pardalos (1992) that the
QAPs produced by their second generator are harder for QAP heuristics than those
generated by the algorithm proposed by Palubeckis (1988), that is, by GEN0.

Table 5 presents computational results for QAP instances produced by GEN4
tuned to mimic the reduction used to prove Theorem 2. The number of trianglest

(second column of the table) was taken equal tot ′ specified in this proof. In this re-
gime of GEN4, an instance of 3DM with a positive answer is constructed randomly,
whereas all object locations on the grid and all triangles (but not their weights) are
selected deterministically. The values ofn and ‘set size’ were extracted from the
first cluster in Table 1. For eachn one problem was generated. To each problem 10-
start descent was applied. The third and fourth columns of the table list the minimal
and, respectively, the average values ofK for solutions obtained. We see that the
values ofKmin in Table 5 are smaller, except two cases, than the corresponding
values for GEN4 in Table 2 but are larger than those for some other generators, for
example GEN1.

Closing this section we should mention that the results obtained when the meas-
ureK ′ instead ofK is used are slightly different. For example, from the analogue
of Table 2 prepared usingK ′ it follows that GENLP and GEN0 are the best (the
minimal values ofK ′ are largest) leaving GEN4 in the third place. The values of
K ′min replacingKmin in Table 5 are 10 times less than the values ofK ′ for GEN4 in
the general case. ForK, they are comparable.

6. Conclusions

In this paper we defined a set whose members are rectilinear QAP instances, con-
structed using triangles, with known provably optimal solutions. We have proved
that this set is hard, that is, no polynomial-time approximation algorithm for the
QAP exists, unless P=NP, which can solve each instance in the set . We have shown
that the set remains such for the grid of size (asymptotically) close to the number of
objects. Besides these main results, we have established a zero lower bound on the
minimal value of the objective function for QAP instances whose flow matrices
are defined by special graphs, named PB-graphs, and for one important type of
such graphs provided a characterization of point sets on the plane when this bound
is tight. As an example, we gave another hard set consisting of QAP instances for
construction of which special procedures for making the copies of PB-graphs larger
than triangles are applied.
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We have described a series of generators with hard output sets of instances with
known optimal solutions and compared these and also two existing generators from
the literature using the well-known multi-start descent heuristic. It follows from
the experiments that with regard to obtaining optimal or close to optimal solutions
within a reasonable amount of time the instances produced are hard enough for
this heuristic. In fact, for the number of objects about 100, hours of IBM PC-type
computer time are required. Based on the results of experimentation, the generator
GEN2M can be recommended for its simplicity and sufficient hardness of QAP
instances created. At least for smallern the more difficult problems are obtained
using GEN5. We expect that the instances produced by the generators in the series
may appear rather difficult for other algorithms for the QAP as well.

Finally, we remark that the PB-graphsHi , i > 5, can be used not only for
instance generation purposes (as in GEN5) but also to improve lower bounds on the
optimal value for the QAPs. A lower bounding algorithm of such type is presented
in Palubeckis (1997).
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